MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.26-2 Unicode version

Theorem r19.26-2 2689
Description: Theorem 19.26 of [Margaris] p. 90 with 2 restricted quantifiers. (Contributed by NM, 10-Aug-2004.)
Assertion
Ref Expression
r19.26-2  |-  ( A. x  e.  A  A. y  e.  B  ( ph  /\  ps )  <->  ( A. x  e.  A  A. y  e.  B  ph  /\  A. x  e.  A  A. y  e.  B  ps ) )

Proof of Theorem r19.26-2
StepHypRef Expression
1 r19.26 2688 . . 3  |-  ( A. y  e.  B  ( ph  /\  ps )  <->  ( A. y  e.  B  ph  /\  A. y  e.  B  ps ) )
21ralbii 2580 . 2  |-  ( A. x  e.  A  A. y  e.  B  ( ph  /\  ps )  <->  A. x  e.  A  ( A. y  e.  B  ph  /\  A. y  e.  B  ps ) )
3 r19.26 2688 . 2  |-  ( A. x  e.  A  ( A. y  e.  B  ph 
/\  A. y  e.  B  ps )  <->  ( A. x  e.  A  A. y  e.  B  ph  /\  A. x  e.  A  A. y  e.  B  ps ) )
42, 3bitri 240 1  |-  ( A. x  e.  A  A. y  e.  B  ( ph  /\  ps )  <->  ( A. x  e.  A  A. y  e.  B  ph  /\  A. x  e.  A  A. y  e.  B  ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358   A.wral 2556
This theorem is referenced by:  fununi  5332  tz7.48lem  6469  isffth2  13806  ispos2  14098  isnsg2  14663  efgred  15073  dfrhm2  15514  caucfil  18725  aalioulem6  19733  ajmoi  21453  adjmo  22428  iccllyscon  23796  dfso3  24089  r19.26-2a  25037  ispridl2  26766  ishlat2  30165
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-11 1727
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-nf 1535  df-ral 2561
  Copyright terms: Public domain W3C validator