MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.26-3 Unicode version

Theorem r19.26-3 2678
Description: Theorem 19.26 of [Margaris] p. 90 with 3 restricted quantifiers. (Contributed by FL, 22-Nov-2010.)
Assertion
Ref Expression
r19.26-3  |-  ( A. x  e.  A  ( ph  /\  ps  /\  ch ) 
<->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps  /\ 
A. x  e.  A  ch ) )

Proof of Theorem r19.26-3
StepHypRef Expression
1 df-3an 941 . . 3  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  ch )
)
21ralbii 2568 . 2  |-  ( A. x  e.  A  ( ph  /\  ps  /\  ch ) 
<-> 
A. x  e.  A  ( ( ph  /\  ps )  /\  ch )
)
3 r19.26 2676 . 2  |-  ( A. x  e.  A  (
( ph  /\  ps )  /\  ch )  <->  ( A. x  e.  A  ( ph  /\  ps )  /\  A. x  e.  A  ch ) )
4 r19.26 2676 . . . 4  |-  ( A. x  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps ) )
54anbi1i 679 . . 3  |-  ( ( A. x  e.  A  ( ph  /\  ps )  /\  A. x  e.  A  ch )  <->  ( ( A. x  e.  A  ph  /\  A. x  e.  A  ps )  /\  A. x  e.  A  ch ) )
6 df-3an 941 . . 3  |-  ( ( A. x  e.  A  ph 
/\  A. x  e.  A  ps  /\  A. x  e.  A  ch )  <->  ( ( A. x  e.  A  ph 
/\  A. x  e.  A  ps )  /\  A. x  e.  A  ch )
)
75, 6bitr4i 245 . 2  |-  ( ( A. x  e.  A  ( ph  /\  ps )  /\  A. x  e.  A  ch )  <->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps  /\ 
A. x  e.  A  ch ) )
82, 3, 73bitri 264 1  |-  ( A. x  e.  A  ( ph  /\  ps  /\  ch ) 
<->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps  /\ 
A. x  e.  A  ch ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    /\ w3a 939   A.wral 2544
This theorem is referenced by:  axeuclid  23998  axcontlem8  24006  svli2  24883  bsstrs  25545  nbssntrs  25546  stoweidlem60  27208
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-11 1719
This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 941  df-tru 1315  df-nf 1537  df-ral 2549
  Copyright terms: Public domain W3C validator