MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.27av Unicode version

Theorem r19.27av 2654
Description: Restricted version of one direction of Theorem 19.27 of [Margaris] p. 90. (The other direction doesn't hold when  A is empty.) (Contributed by NM, 3-Jun-2004.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.27av  |-  ( ( A. x  e.  A  ph 
/\  ps )  ->  A. x  e.  A  ( ph  /\ 
ps ) )
Distinct variable group:    ps, x
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem r19.27av
StepHypRef Expression
1 ax-1 7 . . . 4  |-  ( ps 
->  ( x  e.  A  ->  ps ) )
21ralrimiv 2598 . . 3  |-  ( ps 
->  A. x  e.  A  ps )
32anim2i 555 . 2  |-  ( ( A. x  e.  A  ph 
/\  ps )  ->  ( A. x  e.  A  ph 
/\  A. x  e.  A  ps ) )
4 r19.26 2648 . 2  |-  ( A. x  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps ) )
53, 4sylibr 205 1  |-  ( ( A. x  e.  A  ph 
/\  ps )  ->  A. x  e.  A  ( ph  /\ 
ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    e. wcel 1621   A.wral 2516
This theorem is referenced by:  r19.28av  2655  txlm  17290  tx1stc  17292  spanuni  22069  tartarmap  25241
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-gen 1536  ax-17 1628  ax-4 1692
This theorem depends on definitions:  df-bi 179  df-an 362  df-nf 1540  df-ral 2521
  Copyright terms: Public domain W3C validator