MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.27z Unicode version

Theorem r19.27z 3628
Description: Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010.)
Hypothesis
Ref Expression
r19.27z.1  |-  F/ x ps
Assertion
Ref Expression
r19.27z  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  ps ) ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem r19.27z
StepHypRef Expression
1 r19.27z.1 . . . 4  |-  F/ x ps
21r19.3rz 3621 . . 3  |-  ( A  =/=  (/)  ->  ( ps  <->  A. x  e.  A  ps ) )
32anbi2d 684 . 2  |-  ( A  =/=  (/)  ->  ( ( A. x  e.  A  ph 
/\  ps )  <->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps ) ) )
4 r19.26 2751 . 2  |-  ( A. x  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps ) )
53, 4syl6rbbr 255 1  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   F/wnf 1544    =/= wne 2521   A.wral 2619   (/)c0 3531
This theorem is referenced by:  raaan  3637  raaan2  27276
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-v 2866  df-dif 3231  df-nul 3532
  Copyright terms: Public domain W3C validator