MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.27z Unicode version

Theorem r19.27z 3527
Description: Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010.)
Hypothesis
Ref Expression
r19.27z.1  |-  F/ x ps
Assertion
Ref Expression
r19.27z  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  ps ) ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem r19.27z
StepHypRef Expression
1 r19.27z.1 . . . 4  |-  F/ x ps
21r19.3rz 3520 . . 3  |-  ( A  =/=  (/)  ->  ( ps  <->  A. x  e.  A  ps ) )
32anbi2d 687 . 2  |-  ( A  =/=  (/)  ->  ( ( A. x  e.  A  ph 
/\  ps )  <->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps ) ) )
4 r19.26 2650 . 2  |-  ( A. x  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps ) )
53, 4syl6rbbr 257 1  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   F/wnf 1539    =/= wne 2421   A.wral 2518   (/)c0 3430
This theorem is referenced by:  raaan  3536
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-v 2765  df-dif 3130  df-nul 3431
  Copyright terms: Public domain W3C validator