Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.28av Unicode version

Theorem r19.28av 2837
 Description: Restricted version of one direction of Theorem 19.28 of [Margaris] p. 90. (The other direction doesn't hold when is empty.) (Contributed by NM, 2-Apr-2004.)
Assertion
Ref Expression
r19.28av
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem r19.28av
StepHypRef Expression
1 r19.27av 2836 . 2
2 ancom 438 . 2
3 ancom 438 . . 3
43ralbii 2721 . 2
51, 2, 43imtr4i 258 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359  wral 2697 This theorem is referenced by:  rr19.28v  3070  fununi  5508  txlm  17668 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-11 1761 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-ral 2702
 Copyright terms: Public domain W3C validator