MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.28av Unicode version

Theorem r19.28av 2683
Description: Restricted version of one direction of Theorem 19.28 of [Margaris] p. 90. (The other direction doesn't hold when  A is empty.) (Contributed by NM, 2-Apr-2004.)
Assertion
Ref Expression
r19.28av  |-  ( (
ph  /\  A. x  e.  A  ps )  ->  A. x  e.  A  ( ph  /\  ps )
)
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    A( x)

Proof of Theorem r19.28av
StepHypRef Expression
1 r19.27av 2682 . 2  |-  ( ( A. x  e.  A  ps  /\  ph )  ->  A. x  e.  A  ( ps  /\  ph )
)
2 ancom 439 . 2  |-  ( (
ph  /\  A. x  e.  A  ps )  <->  ( A. x  e.  A  ps  /\  ph ) )
3 ancom 439 . . 3  |-  ( (
ph  /\  ps )  <->  ( ps  /\  ph )
)
43ralbii 2568 . 2  |-  ( A. x  e.  A  ( ph  /\  ps )  <->  A. x  e.  A  ( ps  /\ 
ph ) )
51, 2, 43imtr4i 259 1  |-  ( (
ph  /\  A. x  e.  A  ps )  ->  A. x  e.  A  ( ph  /\  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360   A.wral 2544
This theorem is referenced by:  rr19.28v  2911  fununi  5281  txlm  17336
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-11 1716
This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1312  df-nf 1533  df-ral 2549
  Copyright terms: Public domain W3C validator