MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.28z Unicode version

Theorem r19.28z 3559
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010.)
Hypothesis
Ref Expression
r19.3rz.1  |-  F/ x ph
Assertion
Ref Expression
r19.28z  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  ( ph  /\ 
A. x  e.  A  ps ) ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem r19.28z
StepHypRef Expression
1 r19.3rz.1 . . . 4  |-  F/ x ph
21r19.3rz 3558 . . 3  |-  ( A  =/=  (/)  ->  ( ph  <->  A. x  e.  A  ph ) )
32anbi1d 685 . 2  |-  ( A  =/=  (/)  ->  ( ( ph  /\  A. x  e.  A  ps )  <->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps ) ) )
4 r19.26 2688 . 2  |-  ( A. x  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps ) )
53, 4syl6rbbr 255 1  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  ( ph  /\ 
A. x  e.  A  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   F/wnf 1534    =/= wne 2459   A.wral 2556   (/)c0 3468
This theorem is referenced by:  raaan  3574  raaan2  28056
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-v 2803  df-dif 3168  df-nul 3469
  Copyright terms: Public domain W3C validator