MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.28zv Unicode version

Theorem r19.28zv 3549
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 19-Aug-2004.)
Assertion
Ref Expression
r19.28zv  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  ( ph  /\ 
A. x  e.  A  ps ) ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem r19.28zv
StepHypRef Expression
1 r19.3rzv 3547 . . 3  |-  ( A  =/=  (/)  ->  ( ph  <->  A. x  e.  A  ph ) )
21anbi1d 685 . 2  |-  ( A  =/=  (/)  ->  ( ( ph  /\  A. x  e.  A  ps )  <->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps ) ) )
3 r19.26 2675 . 2  |-  ( A. x  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps ) )
42, 3syl6rbbr 255 1  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  ( ph  /\ 
A. x  e.  A  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    =/= wne 2446   A.wral 2543   (/)c0 3455
This theorem is referenced by:  raaanv  3562  iinrab  3964  iindif2  3971  iinin2  3972  reusv2lem5  4539  reusv7OLD  4546  xpiindi  4821  fint  5420  ixpiin  6842  neips  16850  txflf  17701  dfpo2  24112  diaglbN  31245  dihglbcpreN  31490
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-v 2790  df-dif 3155  df-nul 3456
  Copyright terms: Public domain W3C validator