MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.28zv Unicode version

Theorem r19.28zv 3562
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 19-Aug-2004.)
Assertion
Ref Expression
r19.28zv  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  ( ph  /\ 
A. x  e.  A  ps ) ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem r19.28zv
StepHypRef Expression
1 r19.3rzv 3560 . . 3  |-  ( A  =/=  (/)  ->  ( ph  <->  A. x  e.  A  ph ) )
21anbi1d 685 . 2  |-  ( A  =/=  (/)  ->  ( ( ph  /\  A. x  e.  A  ps )  <->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps ) ) )
3 r19.26 2688 . 2  |-  ( A. x  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps ) )
42, 3syl6rbbr 255 1  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  ( ph  /\ 
A. x  e.  A  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    =/= wne 2459   A.wral 2556   (/)c0 3468
This theorem is referenced by:  raaanv  3575  iinrab  3980  iindif2  3987  iinin2  3988  reusv2lem5  4555  reusv7OLD  4562  xpiindi  4837  fint  5436  ixpiin  6858  neips  16866  txflf  17717  dfpo2  24183  diaglbN  31867  dihglbcpreN  32112
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-v 2803  df-dif 3168  df-nul 3469
  Copyright terms: Public domain W3C validator