MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29r Unicode version

Theorem r19.29r 2684
Description: Variation of Theorem 19.29 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.)
Assertion
Ref Expression
r19.29r  |-  ( ( E. x  e.  A  ph 
/\  A. x  e.  A  ps )  ->  E. x  e.  A  ( ph  /\ 
ps ) )

Proof of Theorem r19.29r
StepHypRef Expression
1 r19.29 2683 . 2  |-  ( ( A. x  e.  A  ps  /\  E. x  e.  A  ph )  ->  E. x  e.  A  ( ps  /\  ph )
)
2 ancom 437 . 2  |-  ( ( E. x  e.  A  ph 
/\  A. x  e.  A  ps )  <->  ( A. x  e.  A  ps  /\  E. x  e.  A  ph )
)
3 ancom 437 . . 3  |-  ( (
ph  /\  ps )  <->  ( ps  /\  ph )
)
43rexbii 2568 . 2  |-  ( E. x  e.  A  (
ph  /\  ps )  <->  E. x  e.  A  ( ps  /\  ph )
)
51, 2, 43imtr4i 257 1  |-  ( ( E. x  e.  A  ph 
/\  A. x  e.  A  ps )  ->  E. x  e.  A  ( ph  /\ 
ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wral 2543   E.wrex 2544
This theorem is referenced by:  2reu5  2973  rlimuni  12024  rlimno1  12127  neindisj2  16860  lmss  17026  fclsbas  17716  isfcf  17729  metcnp3  18086  bndth  18456  ellimc3  19229  lmxrge0  23375  esumcst  23436  cmptdst  25568  cover2  26358  bnj517  28917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-11 1715
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-ral 2548  df-rex 2549
  Copyright terms: Public domain W3C validator