Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r19.32 Unicode version

Theorem r19.32 28048
Description: Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers, analogous to r19.32v 2699. (Contributed by Alexander van der Vekens, 29-Jun-2017.)
Hypothesis
Ref Expression
r19.32.1  |-  F/ x ph
Assertion
Ref Expression
r19.32  |-  ( A. x  e.  A  ( ph  \/  ps )  <->  ( ph  \/  A. x  e.  A  ps ) )

Proof of Theorem r19.32
StepHypRef Expression
1 r19.32.1 . . . 4  |-  F/ x ph
21nfn 1777 . . 3  |-  F/ x  -.  ph
32r19.21 2642 . 2  |-  ( A. x  e.  A  ( -.  ph  ->  ps )  <->  ( -.  ph  ->  A. x  e.  A  ps )
)
4 df-or 359 . . 3  |-  ( (
ph  \/  ps )  <->  ( -.  ph  ->  ps )
)
54ralbii 2580 . 2  |-  ( A. x  e.  A  ( ph  \/  ps )  <->  A. x  e.  A  ( -.  ph 
->  ps ) )
6 df-or 359 . 2  |-  ( (
ph  \/  A. x  e.  A  ps )  <->  ( -.  ph  ->  A. x  e.  A  ps )
)
73, 5, 63bitr4i 268 1  |-  ( A. x  e.  A  ( ph  \/  ps )  <->  ( ph  \/  A. x  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357   F/wnf 1534   A.wral 2556
This theorem is referenced by:  2reu3  28069
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-11 1727
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-nf 1535  df-ral 2561
  Copyright terms: Public domain W3C validator