Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.35 Unicode version

Theorem r19.35 2700
 Description: Restricted quantifier version of Theorem 19.35 of [Margaris] p. 90. (Contributed by NM, 20-Sep-2003.)
Assertion
Ref Expression
r19.35

Proof of Theorem r19.35
StepHypRef Expression
1 r19.26 2688 . . . 4
2 annim 414 . . . . 5
32ralbii 2580 . . . 4
4 df-an 360 . . . 4
51, 3, 43bitr3i 266 . . 3
65con2bii 322 . 2
7 dfrex2 2569 . . 3
87imbi2i 303 . 2
9 dfrex2 2569 . 2
106, 8, 93bitr4ri 269 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 176   wa 358  wral 2556  wrex 2557 This theorem is referenced by:  r19.36av  2701  r19.37  2702  r19.43  2708  r19.37zv  3563  r19.36zv  3567  iinexg  4187  bndndx  9980  nmobndseqi  21373  nmobndseqiOLD  21374  intopcoaconlem3b  25641 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-11 1727 This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-ral 2561  df-rex 2562
 Copyright terms: Public domain W3C validator