MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.36av Unicode version

Theorem r19.36av 2689
Description: One direction of a restricted quantifier version of Theorem 19.36 of [Margaris] p. 90. The other direction doesn't hold when  A is empty. (Contributed by NM, 22-Oct-2003.)
Assertion
Ref Expression
r19.36av  |-  ( E. x  e.  A  (
ph  ->  ps )  -> 
( A. x  e.  A  ph  ->  ps ) )
Distinct variable group:    ps, x
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem r19.36av
StepHypRef Expression
1 r19.35 2688 . 2  |-  ( E. x  e.  A  (
ph  ->  ps )  <->  ( A. x  e.  A  ph  ->  E. x  e.  A  ps ) )
2 idd 21 . . . 4  |-  ( x  e.  A  ->  ( ps  ->  ps ) )
32rexlimiv 2662 . . 3  |-  ( E. x  e.  A  ps  ->  ps )
43imim2i 13 . 2  |-  ( ( A. x  e.  A  ph 
->  E. x  e.  A  ps )  ->  ( A. x  e.  A  ph  ->  ps ) )
51, 4sylbi 187 1  |-  ( E. x  e.  A  (
ph  ->  ps )  -> 
( A. x  e.  A  ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1685   A.wral 2544   E.wrex 2545
This theorem is referenced by:  iinss  3954  uniimadom  8162
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-6 1704  ax-11 1716
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-ral 2549  df-rex 2550
  Copyright terms: Public domain W3C validator