MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.36zv Unicode version

Theorem r19.36zv 3664
Description: Restricted quantifier version of Theorem 19.36 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 20-Sep-2003.)
Assertion
Ref Expression
r19.36zv  |-  ( A  =/=  (/)  ->  ( E. x  e.  A  ( ph  ->  ps )  <->  ( A. x  e.  A  ph  ->  ps ) ) )
Distinct variable groups:    x, A    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem r19.36zv
StepHypRef Expression
1 r19.9rzv 3658 . . 3  |-  ( A  =/=  (/)  ->  ( ps  <->  E. x  e.  A  ps ) )
21imbi2d 308 . 2  |-  ( A  =/=  (/)  ->  ( ( A. x  e.  A  ph 
->  ps )  <->  ( A. x  e.  A  ph  ->  E. x  e.  A  ps ) ) )
3 r19.35 2791 . 2  |-  ( E. x  e.  A  (
ph  ->  ps )  <->  ( A. x  e.  A  ph  ->  E. x  e.  A  ps ) )
42, 3syl6rbbr 256 1  |-  ( A  =/=  (/)  ->  ( E. x  e.  A  ( ph  ->  ps )  <->  ( A. x  e.  A  ph  ->  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    =/= wne 2543   A.wral 2642   E.wrex 2643   (/)c0 3564
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-v 2894  df-dif 3259  df-nul 3565
  Copyright terms: Public domain W3C validator