MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.37zv Unicode version

Theorem r19.37zv 3688
Description: Restricted quantifier version of Theorem 19.37 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by Paul Chapman, 8-Oct-2007.)
Assertion
Ref Expression
r19.37zv  |-  ( A  =/=  (/)  ->  ( E. x  e.  A  ( ph  ->  ps )  <->  ( ph  ->  E. x  e.  A  ps ) ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem r19.37zv
StepHypRef Expression
1 r19.3rzv 3685 . . 3  |-  ( A  =/=  (/)  ->  ( ph  <->  A. x  e.  A  ph ) )
21imbi1d 309 . 2  |-  ( A  =/=  (/)  ->  ( ( ph  ->  E. x  e.  A  ps )  <->  ( A. x  e.  A  ph  ->  E. x  e.  A  ps )
) )
3 r19.35 2819 . 2  |-  ( E. x  e.  A  (
ph  ->  ps )  <->  ( A. x  e.  A  ph  ->  E. x  e.  A  ps ) )
42, 3syl6rbbr 256 1  |-  ( A  =/=  (/)  ->  ( E. x  e.  A  ( ph  ->  ps )  <->  ( ph  ->  E. x  e.  A  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    =/= wne 2571   A.wral 2670   E.wrex 2671   (/)c0 3592
This theorem is referenced by:  ishlat3N  29841  hlsupr2  29873
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-v 2922  df-dif 3287  df-nul 3593
  Copyright terms: Public domain W3C validator