MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.40 Structured version   Unicode version

Theorem r19.40 2851
Description: Restricted quantifier version of Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 2-Apr-2004.)
Assertion
Ref Expression
r19.40  |-  ( E. x  e.  A  (
ph  /\  ps )  ->  ( E. x  e.  A  ph  /\  E. x  e.  A  ps ) )

Proof of Theorem r19.40
StepHypRef Expression
1 simpl 444 . . 3  |-  ( (
ph  /\  ps )  ->  ph )
21reximi 2805 . 2  |-  ( E. x  e.  A  (
ph  /\  ps )  ->  E. x  e.  A  ph )
3 simpr 448 . . 3  |-  ( (
ph  /\  ps )  ->  ps )
43reximi 2805 . 2  |-  ( E. x  e.  A  (
ph  /\  ps )  ->  E. x  e.  A  ps )
52, 4jca 519 1  |-  ( E. x  e.  A  (
ph  /\  ps )  ->  ( E. x  e.  A  ph  /\  E. x  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wrex 2698
This theorem is referenced by:  rexanuz  12141  txflf  18030  metequiv2  18532  mzpcompact2lem  26799
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566
This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551  df-ral 2702  df-rex 2703
  Copyright terms: Public domain W3C validator