MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.43 Unicode version

Theorem r19.43 2695
Description: Restricted version of Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.43  |-  ( E. x  e.  A  (
ph  \/  ps )  <->  ( E. x  e.  A  ph  \/  E. x  e.  A  ps ) )

Proof of Theorem r19.43
StepHypRef Expression
1 r19.35 2687 . 2  |-  ( E. x  e.  A  ( -.  ph  ->  ps )  <->  ( A. x  e.  A  -.  ph  ->  E. x  e.  A  ps )
)
2 df-or 359 . . 3  |-  ( (
ph  \/  ps )  <->  ( -.  ph  ->  ps )
)
32rexbii 2568 . 2  |-  ( E. x  e.  A  (
ph  \/  ps )  <->  E. x  e.  A  ( -.  ph  ->  ps )
)
4 df-or 359 . . 3  |-  ( ( E. x  e.  A  ph  \/  E. x  e.  A  ps )  <->  ( -.  E. x  e.  A  ph  ->  E. x  e.  A  ps ) )
5 ralnex 2553 . . . 4  |-  ( A. x  e.  A  -.  ph  <->  -. 
E. x  e.  A  ph )
65imbi1i 315 . . 3  |-  ( ( A. x  e.  A  -.  ph  ->  E. x  e.  A  ps )  <->  ( -.  E. x  e.  A  ph  ->  E. x  e.  A  ps )
)
74, 6bitr4i 243 . 2  |-  ( ( E. x  e.  A  ph  \/  E. x  e.  A  ps )  <->  ( A. x  e.  A  -.  ph 
->  E. x  e.  A  ps ) )
81, 3, 73bitr4i 268 1  |-  ( E. x  e.  A  (
ph  \/  ps )  <->  ( E. x  e.  A  ph  \/  E. x  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357   A.wral 2543   E.wrex 2544
This theorem is referenced by:  r19.44av  2696  r19.45av  2697  r19.45zv  3551  iunun  3982  wemapso2lem  7265  pythagtriplem2  12870  pythagtrip  12887  dcubic  20142  erdszelem11  23732  soseq  24254  axcontlem4  24595  seglelin  24739  diophun  26853  rexzrexnn0  26885
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-11 1715
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-ral 2548  df-rex 2549
  Copyright terms: Public domain W3C validator