Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.43 Unicode version

Theorem r19.43 2855
 Description: Restricted version of Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.43

Proof of Theorem r19.43
StepHypRef Expression
1 r19.35 2847 . 2
2 df-or 360 . . 3
32rexbii 2722 . 2
4 df-or 360 . . 3
5 ralnex 2707 . . . 4
65imbi1i 316 . . 3
74, 6bitr4i 244 . 2
81, 3, 73bitr4i 269 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 177   wo 358  wral 2697  wrex 2698 This theorem is referenced by:  r19.44av  2856  r19.45av  2857  r19.45zv  3717  iunun  4163  wemapso2lem  7508  pythagtriplem2  13179  pythagtrip  13196  dcubic  20674  erdszelem11  24875  soseq  25509  axcontlem4  25854  seglelin  25998  diophun  26769  rexzrexnn0  26801 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-11 1761 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-ral 2702  df-rex 2703
 Copyright terms: Public domain W3C validator