MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.45av Unicode version

Theorem r19.45av 2672
Description: Restricted version of one direction of Theorem 19.45 of [Margaris] p. 90. (The other direction doesn't hold when  A is empty.) (Contributed by NM, 2-Apr-2004.)
Assertion
Ref Expression
r19.45av  |-  ( E. x  e.  A  (
ph  \/  ps )  ->  ( ph  \/  E. x  e.  A  ps ) )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    A( x)

Proof of Theorem r19.45av
StepHypRef Expression
1 r19.43 2670 . 2  |-  ( E. x  e.  A  (
ph  \/  ps )  <->  ( E. x  e.  A  ph  \/  E. x  e.  A  ps ) )
2 idd 23 . . . 4  |-  ( x  e.  A  ->  ( ph  ->  ph ) )
32rexlimiv 2636 . . 3  |-  ( E. x  e.  A  ph  ->  ph )
43orim1i 505 . 2  |-  ( ( E. x  e.  A  ph  \/  E. x  e.  A  ps )  -> 
( ph  \/  E. x  e.  A  ps )
)
51, 4sylbi 189 1  |-  ( E. x  e.  A  (
ph  \/  ps )  ->  ( ph  \/  E. x  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    \/ wo 359    e. wcel 1621   E.wrex 2519
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-gen 1536  ax-17 1628  ax-4 1692
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-ral 2523  df-rex 2524
  Copyright terms: Public domain W3C validator