MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1elss Unicode version

Theorem r1elss 7478
Description: The range of the  R1 function is transitive. Lemma 2.10 of [Kunen] p. 97. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Hypothesis
Ref Expression
r1elss.1  |-  A  e. 
_V
Assertion
Ref Expression
r1elss  |-  ( A  e.  U. ( R1
" On )  <->  A  C_  U. ( R1 " On ) )

Proof of Theorem r1elss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1elssi 7477 . 2  |-  ( A  e.  U. ( R1
" On )  ->  A  C_  U. ( R1
" On ) )
2 r1elss.1 . . . 4  |-  A  e. 
_V
32tz9.12 7462 . . 3  |-  ( A. y  e.  A  E. x  e.  On  y  e.  ( R1 `  x
)  ->  E. x  e.  On  A  e.  ( R1 `  x ) )
4 dfss3 3170 . . . 4  |-  ( A 
C_  U. ( R1 " On )  <->  A. y  e.  A  y  e.  U. ( R1 " On ) )
5 r1fnon 7439 . . . . . . . 8  |-  R1  Fn  On
6 fnfun 5341 . . . . . . . 8  |-  ( R1  Fn  On  ->  Fun  R1 )
7 funiunfv 5774 . . . . . . . 8  |-  ( Fun 
R1  ->  U_ x  e.  On  ( R1 `  x )  =  U. ( R1
" On ) )
85, 6, 7mp2b 9 . . . . . . 7  |-  U_ x  e.  On  ( R1 `  x )  =  U. ( R1 " On )
98eleq2i 2347 . . . . . 6  |-  ( y  e.  U_ x  e.  On  ( R1 `  x )  <->  y  e.  U. ( R1 " On ) )
10 eliun 3909 . . . . . 6  |-  ( y  e.  U_ x  e.  On  ( R1 `  x )  <->  E. x  e.  On  y  e.  ( R1 `  x ) )
119, 10bitr3i 242 . . . . 5  |-  ( y  e.  U. ( R1
" On )  <->  E. x  e.  On  y  e.  ( R1 `  x ) )
1211ralbii 2567 . . . 4  |-  ( A. y  e.  A  y  e.  U. ( R1 " On )  <->  A. y  e.  A  E. x  e.  On  y  e.  ( R1 `  x ) )
134, 12bitri 240 . . 3  |-  ( A 
C_  U. ( R1 " On )  <->  A. y  e.  A  E. x  e.  On  y  e.  ( R1 `  x ) )
148eleq2i 2347 . . . 4  |-  ( A  e.  U_ x  e.  On  ( R1 `  x )  <->  A  e.  U. ( R1 " On ) )
15 eliun 3909 . . . 4  |-  ( A  e.  U_ x  e.  On  ( R1 `  x )  <->  E. x  e.  On  A  e.  ( R1 `  x ) )
1614, 15bitr3i 242 . . 3  |-  ( A  e.  U. ( R1
" On )  <->  E. x  e.  On  A  e.  ( R1 `  x ) )
173, 13, 163imtr4i 257 . 2  |-  ( A 
C_  U. ( R1 " On )  ->  A  e. 
U. ( R1 " On ) )
181, 17impbii 180 1  |-  ( A  e.  U. ( R1
" On )  <->  A  C_  U. ( R1 " On ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788    C_ wss 3152   U.cuni 3827   U_ciun 3905   Oncon0 4392   "cima 4692   Fun wfun 5249    Fn wfn 5250   ` cfv 5255   R1cr1 7434
This theorem is referenced by:  unir1  7485  tcwf  7553  tcrank  7554  rankcf  8399  wfgru  8438
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6388  df-rdg 6423  df-r1 7436
  Copyright terms: Public domain W3C validator