MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1elss Unicode version

Theorem r1elss 7474
Description: The range of the  R1 function is transitive. Lemma 2.10 of [Kunen] p. 97. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Hypothesis
Ref Expression
r1elss.1  |-  A  e. 
_V
Assertion
Ref Expression
r1elss  |-  ( A  e.  U. ( R1
" On )  <->  A  C_  U. ( R1 " On ) )
Dummy variables  x  y are mutually distinct and distinct from all other variables.

Proof of Theorem r1elss
StepHypRef Expression
1 r1elssi 7473 . 2  |-  ( A  e.  U. ( R1
" On )  ->  A  C_  U. ( R1
" On ) )
2 r1elss.1 . . . 4  |-  A  e. 
_V
32tz9.12 7458 . . 3  |-  ( A. y  e.  A  E. x  e.  On  y  e.  ( R1 `  x
)  ->  E. x  e.  On  A  e.  ( R1 `  x ) )
4 dfss3 3172 . . . 4  |-  ( A 
C_  U. ( R1 " On )  <->  A. y  e.  A  y  e.  U. ( R1 " On ) )
5 r1fnon 7435 . . . . . . . 8  |-  R1  Fn  On
6 fnfun 5307 . . . . . . . 8  |-  ( R1  Fn  On  ->  Fun  R1 )
7 funiunfv 5736 . . . . . . . 8  |-  ( Fun 
R1  ->  U_ x  e.  On  ( R1 `  x )  =  U. ( R1
" On ) )
85, 6, 7mp2b 11 . . . . . . 7  |-  U_ x  e.  On  ( R1 `  x )  =  U. ( R1 " On )
98eleq2i 2349 . . . . . 6  |-  ( y  e.  U_ x  e.  On  ( R1 `  x )  <->  y  e.  U. ( R1 " On ) )
10 eliun 3911 . . . . . 6  |-  ( y  e.  U_ x  e.  On  ( R1 `  x )  <->  E. x  e.  On  y  e.  ( R1 `  x ) )
119, 10bitr3i 244 . . . . 5  |-  ( y  e.  U. ( R1
" On )  <->  E. x  e.  On  y  e.  ( R1 `  x ) )
1211ralbii 2569 . . . 4  |-  ( A. y  e.  A  y  e.  U. ( R1 " On )  <->  A. y  e.  A  E. x  e.  On  y  e.  ( R1 `  x ) )
134, 12bitri 242 . . 3  |-  ( A 
C_  U. ( R1 " On )  <->  A. y  e.  A  E. x  e.  On  y  e.  ( R1 `  x ) )
148eleq2i 2349 . . . 4  |-  ( A  e.  U_ x  e.  On  ( R1 `  x )  <->  A  e.  U. ( R1 " On ) )
15 eliun 3911 . . . 4  |-  ( A  e.  U_ x  e.  On  ( R1 `  x )  <->  E. x  e.  On  A  e.  ( R1 `  x ) )
1614, 15bitr3i 244 . . 3  |-  ( A  e.  U. ( R1
" On )  <->  E. x  e.  On  A  e.  ( R1 `  x ) )
173, 13, 163imtr4i 259 . 2  |-  ( A 
C_  U. ( R1 " On )  ->  A  e. 
U. ( R1 " On ) )
181, 17impbii 182 1  |-  ( A  e.  U. ( R1
" On )  <->  A  C_  U. ( R1 " On ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    = wceq 1624    e. wcel 1685   A.wral 2545   E.wrex 2546   _Vcvv 2790    C_ wss 3154   U.cuni 3829   U_ciun 3907   Oncon0 4392   "cima 4692   Fun wfun 5216    Fn wfn 5217   ` cfv 5222   R1cr1 7430
This theorem is referenced by:  unir1  7481  tcwf  7549  tcrank  7550  rankcf  8395  wfgru  8434
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-recs 6384  df-rdg 6419  df-r1 7432
  Copyright terms: Public domain W3C validator