Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1elwf Structured version   Unicode version

Theorem r1elwf 7724
 Description: Any member of the cumulative hierarchy is well-founded. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1elwf

Proof of Theorem r1elwf
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 r1funlim 7694 . . . . . 6
21simpri 450 . . . . 5
3 limord 4642 . . . . 5
4 ordsson 4772 . . . . 5
52, 3, 4mp2b 10 . . . 4
6 elfvdm 5759 . . . 4
75, 6sseldi 3348 . . 3
8 r1tr 7704 . . . . . 6
9 trss 4313 . . . . . 6
108, 9ax-mp 8 . . . . 5
11 elpwg 3808 . . . . 5
1210, 11mpbird 225 . . . 4
13 r1sucg 7697 . . . . 5
146, 13syl 16 . . . 4
1512, 14eleqtrrd 2515 . . 3
16 suceq 4648 . . . . . 6
1716fveq2d 5734 . . . . 5
1817eleq2d 2505 . . . 4
1918rspcev 3054 . . 3
207, 15, 19syl2anc 644 . 2
21 rankwflemb 7721 . 2
2220, 21sylibr 205 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1653   wcel 1726  wrex 2708   wss 3322  cpw 3801  cuni 4017   wtr 4304   word 4582  con0 4583   wlim 4584   csuc 4585   cdm 4880  cima 4883   wfun 5450  cfv 5456  cr1 7690 This theorem is referenced by:  rankr1ai  7726  pwwf  7735  sswf  7736  unwf  7738  uniwf  7747  rankonidlem  7756  r1pw  7773  r1pwcl  7775  rankr1id  7790  tcrank  7810  dfac12lem2  8026  r1limwun  8613  r1wunlim  8614  inatsk  8655 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-recs 6635  df-rdg 6670  df-r1 7692
 Copyright terms: Public domain W3C validator