MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1om Structured version   Unicode version

Theorem r1om 8114
Description: The set of hereditarily finite sets is countable. See ackbij2 8113 for an explicit bijection that works without Infinity. See also r1omALT 8641. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Assertion
Ref Expression
r1om  |-  ( R1
`  om )  ~~  om

Proof of Theorem r1om
Dummy variables  a 
b  c  d  e  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 7588 . . . 4  |-  om  e.  _V
2 limom 4852 . . . 4  |-  Lim  om
3 r1lim 7688 . . . 4  |-  ( ( om  e.  _V  /\  Lim  om )  ->  ( R1 `  om )  = 
U_ a  e.  om  ( R1 `  a ) )
41, 2, 3mp2an 654 . . 3  |-  ( R1
`  om )  =  U_ a  e.  om  ( R1 `  a )
5 r1fnon 7683 . . . 4  |-  R1  Fn  On
6 fnfun 5534 . . . 4  |-  ( R1  Fn  On  ->  Fun  R1 )
7 funiunfv 5987 . . . 4  |-  ( Fun 
R1  ->  U_ a  e.  om  ( R1 `  a )  =  U. ( R1
" om ) )
85, 6, 7mp2b 10 . . 3  |-  U_ a  e.  om  ( R1 `  a )  =  U. ( R1 " om )
94, 8eqtri 2455 . 2  |-  ( R1
`  om )  =  U. ( R1 " om )
10 iuneq1 4098 . . . . . . 7  |-  ( e  =  a  ->  U_ f  e.  e  ( {
f }  X.  ~P f )  =  U_ f  e.  a  ( { f }  X.  ~P f ) )
11 sneq 3817 . . . . . . . . 9  |-  ( f  =  b  ->  { f }  =  { b } )
12 pweq 3794 . . . . . . . . 9  |-  ( f  =  b  ->  ~P f  =  ~P b
)
1311, 12xpeq12d 4895 . . . . . . . 8  |-  ( f  =  b  ->  ( { f }  X.  ~P f )  =  ( { b }  X.  ~P b ) )
1413cbviunv 4122 . . . . . . 7  |-  U_ f  e.  a  ( {
f }  X.  ~P f )  =  U_ b  e.  a  ( { b }  X.  ~P b )
1510, 14syl6eq 2483 . . . . . 6  |-  ( e  =  a  ->  U_ f  e.  e  ( {
f }  X.  ~P f )  =  U_ b  e.  a  ( { b }  X.  ~P b ) )
1615fveq2d 5724 . . . . 5  |-  ( e  =  a  ->  ( card `  U_ f  e.  e  ( { f }  X.  ~P f
) )  =  (
card `  U_ b  e.  a  ( { b }  X.  ~P b
) ) )
1716cbvmptv 4292 . . . 4  |-  ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( { f }  X.  ~P f ) ) )  =  ( a  e.  ( ~P
om  i^i  Fin )  |->  ( card `  U_ b  e.  a  ( {
b }  X.  ~P b ) ) )
18 dmeq 5062 . . . . . . . 8  |-  ( c  =  a  ->  dom  c  =  dom  a )
1918pweqd 3796 . . . . . . 7  |-  ( c  =  a  ->  ~P dom  c  =  ~P dom  a )
20 imaeq1 5190 . . . . . . . 8  |-  ( c  =  a  ->  (
c " d )  =  ( a "
d ) )
2120fveq2d 5724 . . . . . . 7  |-  ( c  =  a  ->  (
( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( c "
d ) )  =  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( a "
d ) ) )
2219, 21mpteq12dv 4279 . . . . . 6  |-  ( c  =  a  ->  (
d  e.  ~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( { f }  X.  ~P f ) ) ) `  (
c " d ) ) )  =  ( d  e.  ~P dom  a  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( { f }  X.  ~P f ) ) ) `  (
a " d ) ) ) )
23 imaeq2 5191 . . . . . . . 8  |-  ( d  =  b  ->  (
a " d )  =  ( a "
b ) )
2423fveq2d 5724 . . . . . . 7  |-  ( d  =  b  ->  (
( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( a "
d ) )  =  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( a "
b ) ) )
2524cbvmptv 4292 . . . . . 6  |-  ( d  e.  ~P dom  a  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( a "
d ) ) )  =  ( b  e. 
~P dom  a  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( a "
b ) ) )
2622, 25syl6eq 2483 . . . . 5  |-  ( c  =  a  ->  (
d  e.  ~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( { f }  X.  ~P f ) ) ) `  (
c " d ) ) )  =  ( b  e.  ~P dom  a  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( { f }  X.  ~P f ) ) ) `  (
a " b ) ) ) )
2726cbvmptv 4292 . . . 4  |-  ( c  e.  _V  |->  ( d  e.  ~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( c "
d ) ) ) )  =  ( a  e.  _V  |->  ( b  e.  ~P dom  a  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( a "
b ) ) ) )
28 eqid 2435 . . . 4  |-  U. ( rec ( ( c  e. 
_V  |->  ( d  e. 
~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( c "
d ) ) ) ) ,  (/) ) " om )  =  U. ( rec ( ( c  e.  _V  |->  ( d  e.  ~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( c "
d ) ) ) ) ,  (/) ) " om )
2917, 27, 28ackbij2 8113 . . 3  |-  U. ( rec ( ( c  e. 
_V  |->  ( d  e. 
~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( c "
d ) ) ) ) ,  (/) ) " om ) : U. ( R1 " om ) -1-1-onto-> om
30 fvex 5734 . . . . 5  |-  ( R1
`  om )  e.  _V
319, 30eqeltrri 2506 . . . 4  |-  U. ( R1 " om )  e. 
_V
3231f1oen 7120 . . 3  |-  ( U. ( rec ( ( c  e.  _V  |->  ( d  e.  ~P dom  c  |->  ( ( e  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ f  e.  e  ( {
f }  X.  ~P f ) ) ) `
 ( c "
d ) ) ) ) ,  (/) ) " om ) : U. ( R1 " om ) -1-1-onto-> om  ->  U. ( R1 " om )  ~~  om )
3329, 32ax-mp 8 . 2  |-  U. ( R1 " om )  ~~  om
349, 33eqbrtri 4223 1  |-  ( R1
`  om )  ~~  om
Colors of variables: wff set class
Syntax hints:    = wceq 1652    e. wcel 1725   _Vcvv 2948    i^i cin 3311   (/)c0 3620   ~Pcpw 3791   {csn 3806   U.cuni 4007   U_ciun 4085   class class class wbr 4204    e. cmpt 4258   Oncon0 4573   Lim wlim 4574   omcom 4837    X. cxp 4868   dom cdm 4870   "cima 4873   Fun wfun 5440    Fn wfn 5441   -1-1-onto->wf1o 5445   ` cfv 5446   reccrdg 6659    ~~ cen 7098   Fincfn 7101   R1cr1 7678   cardccrd 7812
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7586
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-r1 7680  df-rank 7681  df-card 7816  df-cda 8038
  Copyright terms: Public domain W3C validator