MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1ord3g Unicode version

Theorem r1ord3g 7384
Description: Ordering relation for the cumulative hierarchy of sets. Part of Theorem 3.3(i) of [BellMachover] p. 478. (Contributed by NM, 22-Sep-2003.)
Assertion
Ref Expression
r1ord3g  |-  ( ( A  e.  dom  R1  /\  B  e.  dom  R1 )  ->  ( A  C_  B  ->  ( R1 `  A )  C_  ( R1 `  B ) ) )

Proof of Theorem r1ord3g
StepHypRef Expression
1 r1funlim 7371 . . . . . 6  |-  ( Fun 
R1  /\  Lim  dom  R1 )
21simpri 450 . . . . 5  |-  Lim  dom  R1
3 limord 4388 . . . . 5  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
4 ordsson 4518 . . . . 5  |-  ( Ord 
dom  R1  ->  dom  R1  C_  On )
52, 3, 4mp2b 11 . . . 4  |-  dom  R1  C_  On
65sseli 3118 . . 3  |-  ( A  e.  dom  R1  ->  A  e.  On )
75sseli 3118 . . 3  |-  ( B  e.  dom  R1  ->  B  e.  On )
8 onsseleq 4370 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  <->  ( A  e.  B  \/  A  =  B )
) )
96, 7, 8syl2an 465 . 2  |-  ( ( A  e.  dom  R1  /\  B  e.  dom  R1 )  ->  ( A  C_  B 
<->  ( A  e.  B  \/  A  =  B
) ) )
10 r1ordg 7383 . . . . 5  |-  ( B  e.  dom  R1  ->  ( A  e.  B  -> 
( R1 `  A
)  e.  ( R1
`  B ) ) )
1110adantl 454 . . . 4  |-  ( ( A  e.  dom  R1  /\  B  e.  dom  R1 )  ->  ( A  e.  B  ->  ( R1 `  A )  e.  ( R1 `  B ) ) )
12 r1tr 7381 . . . . 5  |-  Tr  ( R1 `  B )
13 trss 4062 . . . . 5  |-  ( Tr  ( R1 `  B
)  ->  ( ( R1 `  A )  e.  ( R1 `  B
)  ->  ( R1 `  A )  C_  ( R1 `  B ) ) )
1412, 13ax-mp 10 . . . 4  |-  ( ( R1 `  A )  e.  ( R1 `  B )  ->  ( R1 `  A )  C_  ( R1 `  B ) )
1511, 14syl6 31 . . 3  |-  ( ( A  e.  dom  R1  /\  B  e.  dom  R1 )  ->  ( A  e.  B  ->  ( R1 `  A )  C_  ( R1 `  B ) ) )
16 fveq2 5423 . . . . 5  |-  ( A  =  B  ->  ( R1 `  A )  =  ( R1 `  B
) )
17 eqimss 3172 . . . . 5  |-  ( ( R1 `  A )  =  ( R1 `  B )  ->  ( R1 `  A )  C_  ( R1 `  B ) )
1816, 17syl 17 . . . 4  |-  ( A  =  B  ->  ( R1 `  A )  C_  ( R1 `  B ) )
1918a1i 12 . . 3  |-  ( ( A  e.  dom  R1  /\  B  e.  dom  R1 )  ->  ( A  =  B  ->  ( R1 `  A )  C_  ( R1 `  B ) ) )
2015, 19jaod 371 . 2  |-  ( ( A  e.  dom  R1  /\  B  e.  dom  R1 )  ->  ( ( A  e.  B  \/  A  =  B )  ->  ( R1 `  A )  C_  ( R1 `  B ) ) )
219, 20sylbid 208 1  |-  ( ( A  e.  dom  R1  /\  B  e.  dom  R1 )  ->  ( A  C_  B  ->  ( R1 `  A )  C_  ( R1 `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621    C_ wss 3094   Tr wtr 4053   Ord word 4328   Oncon0 4329   Lim wlim 4330   dom cdm 4626   Fun wfun 4632   ` cfv 4638   R1cr1 7367
This theorem is referenced by:  r1ord3  7387  r1val1  7391  rankr1ag  7407  unwf  7415  rankelb  7429  rankonidlem  7433
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-recs 6321  df-rdg 6356  df-r1 7369
  Copyright terms: Public domain W3C validator