MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1ordg Unicode version

Theorem r1ordg 7693
Description: Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of [TakeutiZaring] p. 77. (Contributed by NM, 8-Sep-2003.)
Assertion
Ref Expression
r1ordg  |-  ( B  e.  dom  R1  ->  ( A  e.  B  -> 
( R1 `  A
)  e.  ( R1
`  B ) ) )

Proof of Theorem r1ordg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 444 . . . 4  |-  ( ( B  e.  dom  R1  /\  A  e.  B )  ->  B  e.  dom  R1 )
2 r1funlim 7681 . . . . . . . 8  |-  ( Fun 
R1  /\  Lim  dom  R1 )
32simpri 449 . . . . . . 7  |-  Lim  dom  R1
4 limord 4632 . . . . . . 7  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
53, 4ax-mp 8 . . . . . 6  |-  Ord  dom  R1
6 ordsson 4761 . . . . . 6  |-  ( Ord 
dom  R1  ->  dom  R1  C_  On )
75, 6ax-mp 8 . . . . 5  |-  dom  R1  C_  On
87sseli 3336 . . . 4  |-  ( B  e.  dom  R1  ->  B  e.  On )
91, 8syl 16 . . 3  |-  ( ( B  e.  dom  R1  /\  A  e.  B )  ->  B  e.  On )
10 onelon 4598 . . . . 5  |-  ( ( B  e.  On  /\  A  e.  B )  ->  A  e.  On )
118, 10sylan 458 . . . 4  |-  ( ( B  e.  dom  R1  /\  A  e.  B )  ->  A  e.  On )
12 suceloni 4784 . . . 4  |-  ( A  e.  On  ->  suc  A  e.  On )
1311, 12syl 16 . . 3  |-  ( ( B  e.  dom  R1  /\  A  e.  B )  ->  suc  A  e.  On )
14 eloni 4583 . . . . . 6  |-  ( B  e.  On  ->  Ord  B )
15 ordsucss 4789 . . . . . 6  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
1614, 15syl 16 . . . . 5  |-  ( B  e.  On  ->  ( A  e.  B  ->  suc 
A  C_  B )
)
1716imp 419 . . . 4  |-  ( ( B  e.  On  /\  A  e.  B )  ->  suc  A  C_  B
)
188, 17sylan 458 . . 3  |-  ( ( B  e.  dom  R1  /\  A  e.  B )  ->  suc  A  C_  B
)
19 eleq1 2495 . . . . . 6  |-  ( x  =  suc  A  -> 
( x  e.  dom  R1  <->  suc 
A  e.  dom  R1 ) )
20 fveq2 5719 . . . . . . 7  |-  ( x  =  suc  A  -> 
( R1 `  x
)  =  ( R1
`  suc  A )
)
2120eleq2d 2502 . . . . . 6  |-  ( x  =  suc  A  -> 
( ( R1 `  A )  e.  ( R1 `  x )  <-> 
( R1 `  A
)  e.  ( R1
`  suc  A )
) )
2219, 21imbi12d 312 . . . . 5  |-  ( x  =  suc  A  -> 
( ( x  e. 
dom  R1  ->  ( R1
`  A )  e.  ( R1 `  x
) )  <->  ( suc  A  e.  dom  R1  ->  ( R1 `  A )  e.  ( R1 `  suc  A ) ) ) )
23 eleq1 2495 . . . . . 6  |-  ( x  =  y  ->  (
x  e.  dom  R1  <->  y  e.  dom  R1 ) )
24 fveq2 5719 . . . . . . 7  |-  ( x  =  y  ->  ( R1 `  x )  =  ( R1 `  y
) )
2524eleq2d 2502 . . . . . 6  |-  ( x  =  y  ->  (
( R1 `  A
)  e.  ( R1
`  x )  <->  ( R1 `  A )  e.  ( R1 `  y ) ) )
2623, 25imbi12d 312 . . . . 5  |-  ( x  =  y  ->  (
( x  e.  dom  R1 
->  ( R1 `  A
)  e.  ( R1
`  x ) )  <-> 
( y  e.  dom  R1 
->  ( R1 `  A
)  e.  ( R1
`  y ) ) ) )
27 eleq1 2495 . . . . . 6  |-  ( x  =  suc  y  -> 
( x  e.  dom  R1  <->  suc  y  e.  dom  R1 ) )
28 fveq2 5719 . . . . . . 7  |-  ( x  =  suc  y  -> 
( R1 `  x
)  =  ( R1
`  suc  y )
)
2928eleq2d 2502 . . . . . 6  |-  ( x  =  suc  y  -> 
( ( R1 `  A )  e.  ( R1 `  x )  <-> 
( R1 `  A
)  e.  ( R1
`  suc  y )
) )
3027, 29imbi12d 312 . . . . 5  |-  ( x  =  suc  y  -> 
( ( x  e. 
dom  R1  ->  ( R1
`  A )  e.  ( R1 `  x
) )  <->  ( suc  y  e.  dom  R1  ->  ( R1 `  A )  e.  ( R1 `  suc  y ) ) ) )
31 eleq1 2495 . . . . . 6  |-  ( x  =  B  ->  (
x  e.  dom  R1  <->  B  e.  dom  R1 ) )
32 fveq2 5719 . . . . . . 7  |-  ( x  =  B  ->  ( R1 `  x )  =  ( R1 `  B
) )
3332eleq2d 2502 . . . . . 6  |-  ( x  =  B  ->  (
( R1 `  A
)  e.  ( R1
`  x )  <->  ( R1 `  A )  e.  ( R1 `  B ) ) )
3431, 33imbi12d 312 . . . . 5  |-  ( x  =  B  ->  (
( x  e.  dom  R1 
->  ( R1 `  A
)  e.  ( R1
`  x ) )  <-> 
( B  e.  dom  R1 
->  ( R1 `  A
)  e.  ( R1
`  B ) ) ) )
35 fvex 5733 . . . . . . . 8  |-  ( R1
`  A )  e. 
_V
3635pwid 3804 . . . . . . 7  |-  ( R1
`  A )  e. 
~P ( R1 `  A )
37 limsuc 4820 . . . . . . . . 9  |-  ( Lim 
dom  R1  ->  ( A  e.  dom  R1  <->  suc  A  e. 
dom  R1 ) )
383, 37ax-mp 8 . . . . . . . 8  |-  ( A  e.  dom  R1  <->  suc  A  e. 
dom  R1 )
39 r1sucg 7684 . . . . . . . 8  |-  ( A  e.  dom  R1  ->  ( R1 `  suc  A
)  =  ~P ( R1 `  A ) )
4038, 39sylbir 205 . . . . . . 7  |-  ( suc 
A  e.  dom  R1  ->  ( R1 `  suc  A )  =  ~P ( R1 `  A ) )
4136, 40syl5eleqr 2522 . . . . . 6  |-  ( suc 
A  e.  dom  R1  ->  ( R1 `  A
)  e.  ( R1
`  suc  A )
)
4241a1i 11 . . . . 5  |-  ( suc 
A  e.  On  ->  ( suc  A  e.  dom  R1 
->  ( R1 `  A
)  e.  ( R1
`  suc  A )
) )
43 limsuc 4820 . . . . . . . 8  |-  ( Lim 
dom  R1  ->  ( y  e.  dom  R1  <->  suc  y  e. 
dom  R1 ) )
443, 43ax-mp 8 . . . . . . 7  |-  ( y  e.  dom  R1  <->  suc  y  e. 
dom  R1 )
45 r1tr 7691 . . . . . . . . . . 11  |-  Tr  ( R1 `  y )
46 dftr4 4299 . . . . . . . . . . 11  |-  ( Tr  ( R1 `  y
)  <->  ( R1 `  y )  C_  ~P ( R1 `  y ) )
4745, 46mpbi 200 . . . . . . . . . 10  |-  ( R1
`  y )  C_  ~P ( R1 `  y
)
48 r1sucg 7684 . . . . . . . . . 10  |-  ( y  e.  dom  R1  ->  ( R1 `  suc  y
)  =  ~P ( R1 `  y ) )
4947, 48syl5sseqr 3389 . . . . . . . . 9  |-  ( y  e.  dom  R1  ->  ( R1 `  y ) 
C_  ( R1 `  suc  y ) )
5049sseld 3339 . . . . . . . 8  |-  ( y  e.  dom  R1  ->  ( ( R1 `  A
)  e.  ( R1
`  y )  -> 
( R1 `  A
)  e.  ( R1
`  suc  y )
) )
5150a2i 13 . . . . . . 7  |-  ( ( y  e.  dom  R1  ->  ( R1 `  A
)  e.  ( R1
`  y ) )  ->  ( y  e. 
dom  R1  ->  ( R1
`  A )  e.  ( R1 `  suc  y ) ) )
5244, 51syl5bir 210 . . . . . 6  |-  ( ( y  e.  dom  R1  ->  ( R1 `  A
)  e.  ( R1
`  y ) )  ->  ( suc  y  e.  dom  R1  ->  ( R1 `  A )  e.  ( R1 `  suc  y ) ) )
5352a1i 11 . . . . 5  |-  ( ( ( y  e.  On  /\ 
suc  A  e.  On )  /\  suc  A  C_  y )  ->  (
( y  e.  dom  R1 
->  ( R1 `  A
)  e.  ( R1
`  y ) )  ->  ( suc  y  e.  dom  R1  ->  ( R1 `  A )  e.  ( R1 `  suc  y ) ) ) )
54 simprl 733 . . . . . . . . . . . 12  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  suc  A  C_  x )
55 simplr 732 . . . . . . . . . . . . . 14  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  suc  A  e.  On )
56 sucelon 4788 . . . . . . . . . . . . . 14  |-  ( A  e.  On  <->  suc  A  e.  On )
5755, 56sylibr 204 . . . . . . . . . . . . 13  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  A  e.  On )
58 limord 4632 . . . . . . . . . . . . . 14  |-  ( Lim  x  ->  Ord  x )
5958ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  Ord  x )
60 ordelsuc 4791 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  Ord  x )  ->  ( A  e.  x  <->  suc  A  C_  x ) )
6157, 59, 60syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  -> 
( A  e.  x  <->  suc 
A  C_  x )
)
6254, 61mpbird 224 . . . . . . . . . . 11  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  A  e.  x )
63 limsuc 4820 . . . . . . . . . . . 12  |-  ( Lim  x  ->  ( A  e.  x  <->  suc  A  e.  x
) )
6463ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  -> 
( A  e.  x  <->  suc 
A  e.  x ) )
6562, 64mpbid 202 . . . . . . . . . 10  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  suc  A  e.  x )
66 simprr 734 . . . . . . . . . . . . 13  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  x  e.  dom  R1 )
67 ordtr1 4616 . . . . . . . . . . . . . 14  |-  ( Ord 
dom  R1  ->  ( ( A  e.  x  /\  x  e.  dom  R1 )  ->  A  e.  dom  R1 ) )
685, 67ax-mp 8 . . . . . . . . . . . . 13  |-  ( ( A  e.  x  /\  x  e.  dom  R1 )  ->  A  e.  dom  R1 )
6962, 66, 68syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  A  e.  dom  R1 )
7069, 39syl 16 . . . . . . . . . . 11  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  -> 
( R1 `  suc  A )  =  ~P ( R1 `  A ) )
7136, 70syl5eleqr 2522 . . . . . . . . . 10  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  -> 
( R1 `  A
)  e.  ( R1
`  suc  A )
)
72 fveq2 5719 . . . . . . . . . . . 12  |-  ( y  =  suc  A  -> 
( R1 `  y
)  =  ( R1
`  suc  A )
)
7372eleq2d 2502 . . . . . . . . . . 11  |-  ( y  =  suc  A  -> 
( ( R1 `  A )  e.  ( R1 `  y )  <-> 
( R1 `  A
)  e.  ( R1
`  suc  A )
) )
7473rspcev 3044 . . . . . . . . . 10  |-  ( ( suc  A  e.  x  /\  ( R1 `  A
)  e.  ( R1
`  suc  A )
)  ->  E. y  e.  x  ( R1 `  A )  e.  ( R1 `  y ) )
7565, 71, 74syl2anc 643 . . . . . . . . 9  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  E. y  e.  x  ( R1 `  A )  e.  ( R1 `  y ) )
76 eliun 4089 . . . . . . . . 9  |-  ( ( R1 `  A )  e.  U_ y  e.  x  ( R1 `  y )  <->  E. y  e.  x  ( R1 `  A )  e.  ( R1 `  y ) )
7775, 76sylibr 204 . . . . . . . 8  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  -> 
( R1 `  A
)  e.  U_ y  e.  x  ( R1 `  y ) )
78 simpll 731 . . . . . . . . 9  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  ->  Lim  x )
79 r1limg 7686 . . . . . . . . 9  |-  ( ( x  e.  dom  R1  /\ 
Lim  x )  -> 
( R1 `  x
)  =  U_ y  e.  x  ( R1 `  y ) )
8066, 78, 79syl2anc 643 . . . . . . . 8  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  -> 
( R1 `  x
)  =  U_ y  e.  x  ( R1 `  y ) )
8177, 80eleqtrrd 2512 . . . . . . 7  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  ( suc  A  C_  x  /\  x  e. 
dom  R1 ) )  -> 
( R1 `  A
)  e.  ( R1
`  x ) )
8281expr 599 . . . . . 6  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  ->  (
x  e.  dom  R1  ->  ( R1 `  A
)  e.  ( R1
`  x ) ) )
8382a1d 23 . . . . 5  |-  ( ( ( Lim  x  /\  suc  A  e.  On )  /\  suc  A  C_  x )  ->  ( A. y  e.  x  ( suc  A  C_  y  ->  ( y  e.  dom  R1 
->  ( R1 `  A
)  e.  ( R1
`  y ) ) )  ->  ( x  e.  dom  R1  ->  ( R1 `  A )  e.  ( R1 `  x
) ) ) )
8422, 26, 30, 34, 42, 53, 83tfindsg 4831 . . . 4  |-  ( ( ( B  e.  On  /\ 
suc  A  e.  On )  /\  suc  A  C_  B )  ->  ( B  e.  dom  R1  ->  ( R1 `  A )  e.  ( R1 `  B ) ) )
8584impr 603 . . 3  |-  ( ( ( B  e.  On  /\ 
suc  A  e.  On )  /\  ( suc  A  C_  B  /\  B  e. 
dom  R1 ) )  -> 
( R1 `  A
)  e.  ( R1
`  B ) )
869, 13, 18, 1, 85syl22anc 1185 . 2  |-  ( ( B  e.  dom  R1  /\  A  e.  B )  ->  ( R1 `  A )  e.  ( R1 `  B ) )
8786ex 424 1  |-  ( B  e.  dom  R1  ->  ( A  e.  B  -> 
( R1 `  A
)  e.  ( R1
`  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698    C_ wss 3312   ~Pcpw 3791   U_ciun 4085   Tr wtr 4294   Ord word 4572   Oncon0 4573   Lim wlim 4574   suc csuc 4575   dom cdm 4869   Fun wfun 5439   ` cfv 5445   R1cr1 7677
This theorem is referenced by:  r1ord3g  7694  r1ord  7695
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-recs 6624  df-rdg 6659  df-r1 7679
  Copyright terms: Public domain W3C validator