MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1val1 Structured version   Unicode version

Theorem r1val1 7712
Description: The value of the cumulative hierarchy of sets function expressed recursively. Theorem 7Q of [Enderton] p. 202. (Contributed by NM, 25-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
r1val1  |-  ( A  e.  dom  R1  ->  ( R1 `  A )  =  U_ x  e.  A  ~P ( R1
`  x ) )
Distinct variable group:    x, A

Proof of Theorem r1val1
StepHypRef Expression
1 r1funlim 7692 . . . . . . . 8  |-  ( Fun 
R1  /\  Lim  dom  R1 )
21simpri 449 . . . . . . 7  |-  Lim  dom  R1
3 limord 4640 . . . . . . 7  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
42, 3ax-mp 8 . . . . . 6  |-  Ord  dom  R1
5 ordsson 4770 . . . . . 6  |-  ( Ord 
dom  R1  ->  dom  R1  C_  On )
64, 5ax-mp 8 . . . . 5  |-  dom  R1  C_  On
76sseli 3344 . . . 4  |-  ( A  e.  dom  R1  ->  A  e.  On )
8 onzsl 4826 . . . 4  |-  ( A  e.  On  <->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A
) ) )
97, 8sylib 189 . . 3  |-  ( A  e.  dom  R1  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A ) ) )
10 simpr 448 . . . . . . 7  |-  ( ( A  e.  dom  R1  /\  A  =  (/) )  ->  A  =  (/) )
1110fveq2d 5732 . . . . . 6  |-  ( ( A  e.  dom  R1  /\  A  =  (/) )  -> 
( R1 `  A
)  =  ( R1
`  (/) ) )
12 r10 7694 . . . . . 6  |-  ( R1
`  (/) )  =  (/)
1311, 12syl6eq 2484 . . . . 5  |-  ( ( A  e.  dom  R1  /\  A  =  (/) )  -> 
( R1 `  A
)  =  (/) )
14 0ss 3656 . . . . . 6  |-  (/)  C_  U_ x  e.  A  ~P ( R1 `  x )
1514a1i 11 . . . . 5  |-  ( ( A  e.  dom  R1  /\  A  =  (/) )  ->  (/)  C_  U_ x  e.  A  ~P ( R1 `  x
) )
1613, 15eqsstrd 3382 . . . 4  |-  ( ( A  e.  dom  R1  /\  A  =  (/) )  -> 
( R1 `  A
)  C_  U_ x  e.  A  ~P ( R1
`  x ) )
17 nfv 1629 . . . . . 6  |-  F/ x  A  e.  dom  R1
18 nfcv 2572 . . . . . . 7  |-  F/_ x
( R1 `  A
)
19 nfiu1 4121 . . . . . . 7  |-  F/_ x U_ x  e.  A  ~P ( R1 `  x
)
2018, 19nfss 3341 . . . . . 6  |-  F/ x
( R1 `  A
)  C_  U_ x  e.  A  ~P ( R1
`  x )
21 simpr 448 . . . . . . . . . . 11  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  A  =  suc  x )
2221fveq2d 5732 . . . . . . . . . 10  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  ( R1 `  A )  =  ( R1 `  suc  x
) )
23 eleq1 2496 . . . . . . . . . . . . 13  |-  ( A  =  suc  x  -> 
( A  e.  dom  R1  <->  suc  x  e.  dom  R1 ) )
2423biimpac 473 . . . . . . . . . . . 12  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  suc  x  e. 
dom  R1 )
25 limsuc 4829 . . . . . . . . . . . . 13  |-  ( Lim 
dom  R1  ->  ( x  e.  dom  R1  <->  suc  x  e. 
dom  R1 ) )
262, 25ax-mp 8 . . . . . . . . . . . 12  |-  ( x  e.  dom  R1  <->  suc  x  e. 
dom  R1 )
2724, 26sylibr 204 . . . . . . . . . . 11  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  x  e.  dom  R1 )
28 r1sucg 7695 . . . . . . . . . . 11  |-  ( x  e.  dom  R1  ->  ( R1 `  suc  x
)  =  ~P ( R1 `  x ) )
2927, 28syl 16 . . . . . . . . . 10  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  ( R1 ` 
suc  x )  =  ~P ( R1 `  x ) )
3022, 29eqtrd 2468 . . . . . . . . 9  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  ( R1 `  A )  =  ~P ( R1 `  x ) )
31 vex 2959 . . . . . . . . . . . 12  |-  x  e. 
_V
3231sucid 4660 . . . . . . . . . . 11  |-  x  e. 
suc  x
3332, 21syl5eleqr 2523 . . . . . . . . . 10  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  x  e.  A )
34 ssiun2 4134 . . . . . . . . . 10  |-  ( x  e.  A  ->  ~P ( R1 `  x ) 
C_  U_ x  e.  A  ~P ( R1 `  x
) )
3533, 34syl 16 . . . . . . . . 9  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  ~P ( R1 `  x )  C_  U_ x  e.  A  ~P ( R1 `  x ) )
3630, 35eqsstrd 3382 . . . . . . . 8  |-  ( ( A  e.  dom  R1  /\  A  =  suc  x
)  ->  ( R1 `  A )  C_  U_ x  e.  A  ~P ( R1 `  x ) )
3736ex 424 . . . . . . 7  |-  ( A  e.  dom  R1  ->  ( A  =  suc  x  ->  ( R1 `  A
)  C_  U_ x  e.  A  ~P ( R1
`  x ) ) )
3837a1d 23 . . . . . 6  |-  ( A  e.  dom  R1  ->  ( x  e.  On  ->  ( A  =  suc  x  ->  ( R1 `  A
)  C_  U_ x  e.  A  ~P ( R1
`  x ) ) ) )
3917, 20, 38rexlimd 2827 . . . . 5  |-  ( A  e.  dom  R1  ->  ( E. x  e.  On  A  =  suc  x  -> 
( R1 `  A
)  C_  U_ x  e.  A  ~P ( R1
`  x ) ) )
4039imp 419 . . . 4  |-  ( ( A  e.  dom  R1  /\ 
E. x  e.  On  A  =  suc  x )  ->  ( R1 `  A )  C_  U_ x  e.  A  ~P ( R1 `  x ) )
41 r1limg 7697 . . . . . 6  |-  ( ( A  e.  dom  R1  /\ 
Lim  A )  -> 
( R1 `  A
)  =  U_ x  e.  A  ( R1 `  x ) )
42 r1tr 7702 . . . . . . . . . 10  |-  Tr  ( R1 `  x )
43 dftr4 4307 . . . . . . . . . 10  |-  ( Tr  ( R1 `  x
)  <->  ( R1 `  x )  C_  ~P ( R1 `  x ) )
4442, 43mpbi 200 . . . . . . . . 9  |-  ( R1
`  x )  C_  ~P ( R1 `  x
)
4544a1i 11 . . . . . . . 8  |-  ( ( A  e.  dom  R1  /\ 
Lim  A )  -> 
( R1 `  x
)  C_  ~P ( R1 `  x ) )
4645ralrimivw 2790 . . . . . . 7  |-  ( ( A  e.  dom  R1  /\ 
Lim  A )  ->  A. x  e.  A  ( R1 `  x ) 
C_  ~P ( R1 `  x ) )
47 ss2iun 4108 . . . . . . 7  |-  ( A. x  e.  A  ( R1 `  x )  C_  ~P ( R1 `  x
)  ->  U_ x  e.  A  ( R1 `  x )  C_  U_ x  e.  A  ~P ( R1 `  x ) )
4846, 47syl 16 . . . . . 6  |-  ( ( A  e.  dom  R1  /\ 
Lim  A )  ->  U_ x  e.  A  ( R1 `  x ) 
C_  U_ x  e.  A  ~P ( R1 `  x
) )
4941, 48eqsstrd 3382 . . . . 5  |-  ( ( A  e.  dom  R1  /\ 
Lim  A )  -> 
( R1 `  A
)  C_  U_ x  e.  A  ~P ( R1
`  x ) )
5049adantrl 697 . . . 4  |-  ( ( A  e.  dom  R1  /\  ( A  e.  _V  /\ 
Lim  A ) )  ->  ( R1 `  A )  C_  U_ x  e.  A  ~P ( R1 `  x ) )
5116, 40, 503jaodan 1250 . . 3  |-  ( ( A  e.  dom  R1  /\  ( A  =  (/)  \/ 
E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\ 
Lim  A ) ) )  ->  ( R1 `  A )  C_  U_ x  e.  A  ~P ( R1 `  x ) )
529, 51mpdan 650 . 2  |-  ( A  e.  dom  R1  ->  ( R1 `  A ) 
C_  U_ x  e.  A  ~P ( R1 `  x
) )
53 ordtr1 4624 . . . . . . . 8  |-  ( Ord 
dom  R1  ->  ( ( x  e.  A  /\  A  e.  dom  R1 )  ->  x  e.  dom  R1 ) )
544, 53ax-mp 8 . . . . . . 7  |-  ( ( x  e.  A  /\  A  e.  dom  R1 )  ->  x  e.  dom  R1 )
5554ancoms 440 . . . . . 6  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  x  e.  dom  R1 )
5655, 28syl 16 . . . . 5  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  ( R1 `  suc  x )  =  ~P ( R1 `  x ) )
57 simpr 448 . . . . . . 7  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  x  e.  A
)
58 ordelord 4603 . . . . . . . . . 10  |-  ( ( Ord  dom  R1  /\  A  e.  dom  R1 )  ->  Ord  A )
594, 58mpan 652 . . . . . . . . 9  |-  ( A  e.  dom  R1  ->  Ord 
A )
6059adantr 452 . . . . . . . 8  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  Ord  A )
61 ordelsuc 4800 . . . . . . . 8  |-  ( ( x  e.  A  /\  Ord  A )  ->  (
x  e.  A  <->  suc  x  C_  A ) )
6257, 60, 61syl2anc 643 . . . . . . 7  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  ( x  e.  A  <->  suc  x  C_  A
) )
6357, 62mpbid 202 . . . . . 6  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  suc  x  C_  A
)
6455, 26sylib 189 . . . . . . 7  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  suc  x  e.  dom  R1 )
65 simpl 444 . . . . . . 7  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  A  e.  dom  R1 )
66 r1ord3g 7705 . . . . . . 7  |-  ( ( suc  x  e.  dom  R1 
/\  A  e.  dom  R1 )  ->  ( suc  x  C_  A  ->  ( R1 `  suc  x ) 
C_  ( R1 `  A ) ) )
6764, 65, 66syl2anc 643 . . . . . 6  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  ( suc  x  C_  A  ->  ( R1 ` 
suc  x )  C_  ( R1 `  A ) ) )
6863, 67mpd 15 . . . . 5  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  ( R1 `  suc  x )  C_  ( R1 `  A ) )
6956, 68eqsstr3d 3383 . . . 4  |-  ( ( A  e.  dom  R1  /\  x  e.  A )  ->  ~P ( R1
`  x )  C_  ( R1 `  A ) )
7069ralrimiva 2789 . . 3  |-  ( A  e.  dom  R1  ->  A. x  e.  A  ~P ( R1 `  x ) 
C_  ( R1 `  A ) )
71 iunss 4132 . . 3  |-  ( U_ x  e.  A  ~P ( R1 `  x ) 
C_  ( R1 `  A )  <->  A. x  e.  A  ~P ( R1 `  x )  C_  ( R1 `  A ) )
7270, 71sylibr 204 . 2  |-  ( A  e.  dom  R1  ->  U_ x  e.  A  ~P ( R1 `  x ) 
C_  ( R1 `  A ) )
7352, 72eqssd 3365 1  |-  ( A  e.  dom  R1  ->  ( R1 `  A )  =  U_ x  e.  A  ~P ( R1
`  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    \/ w3o 935    = wceq 1652    e. wcel 1725   A.wral 2705   E.wrex 2706   _Vcvv 2956    C_ wss 3320   (/)c0 3628   ~Pcpw 3799   U_ciun 4093   Tr wtr 4302   Ord word 4580   Oncon0 4581   Lim wlim 4582   suc csuc 4583   dom cdm 4878   Fun wfun 5448   ` cfv 5454   R1cr1 7688
This theorem is referenced by:  rankr1ai  7724  r1val3  7764
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-recs 6633  df-rdg 6668  df-r1 7690
  Copyright terms: Public domain W3C validator