Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimdaa Unicode version

Theorem ralimdaa 2747
 Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-Sep-2003.)
Hypotheses
Ref Expression
ralimdaa.1
ralimdaa.2
Assertion
Ref Expression
ralimdaa

Proof of Theorem ralimdaa
StepHypRef Expression
1 ralimdaa.1 . . 3
2 ralimdaa.2 . . . . 5
32ex 424 . . . 4
43a2d 24 . . 3
51, 4alimd 1776 . 2
6 df-ral 2675 . 2
7 df-ral 2675 . 2
85, 6, 73imtr4g 262 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359  wal 1546  wnf 1550   wcel 1721  wral 2670 This theorem is referenced by:  ralimdva  2748  eltsk2g  8586  ptcnplem  17610  infrglb  27593  stoweidlem61  27681  stoweid  27683 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-11 1757 This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1548  df-nf 1551  df-ral 2675
 Copyright terms: Public domain W3C validator