Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrimdvv Structured version   Unicode version

Theorem ralrimdvv 2793
 Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 1-Jun-2005.)
Hypothesis
Ref Expression
ralrimdvv.1
Assertion
Ref Expression
ralrimdvv
Distinct variable groups:   ,,   ,,   ,
Allowed substitution hints:   (,)   ()   (,)

Proof of Theorem ralrimdvv
StepHypRef Expression
1 ralrimdvv.1 . . . 4
21imp 419 . . 3
32ralrimivv 2790 . 2
43ex 424 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   wcel 1725  wral 2698 This theorem is referenced by:  ralrimdvva  2794  clatl  14536  lspsneu  16188  aalioulem4  20245  fargshiftf1  21617 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-11 1761 This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551  df-nf 1554  df-ral 2703
 Copyright terms: Public domain W3C validator