Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrimdvva Unicode version

Theorem ralrimdvva 2758
 Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 2-Feb-2008.)
Hypothesis
Ref Expression
ralrimdvva.1
Assertion
Ref Expression
ralrimdvva
Distinct variable groups:   ,,   ,,   ,
Allowed substitution hints:   (,)   ()   (,)

Proof of Theorem ralrimdvva
StepHypRef Expression
1 ralrimdvva.1 . . . 4
21ex 424 . . 3
32com23 74 . 2
43ralrimdvv 2757 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   wcel 1721  wral 2663 This theorem is referenced by:  isosolem  6020  kgencn2  17524  fbunfip  17836  reconn  18744  c1lip1  19762  cdj3i  23806  ispridl2  26355  ispridlc  26387 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-11 1757 This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1548  df-nf 1551  df-ral 2668
 Copyright terms: Public domain W3C validator