MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrimdvva Unicode version

Theorem ralrimdvva 2609
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 2-Feb-2008.)
Hypothesis
Ref Expression
ralrimdvva.1  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( ps  ->  ch ) )
Assertion
Ref Expression
ralrimdvva  |-  ( ph  ->  ( ps  ->  A. x  e.  A  A. y  e.  B  ch )
)
Distinct variable groups:    x, y, ph    ps, x, y    y, A
Allowed substitution hints:    ch( x, y)    A( x)    B( x, y)

Proof of Theorem ralrimdvva
StepHypRef Expression
1 ralrimdvva.1 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( ps  ->  ch ) )
21ex 425 . . 3  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  ( ps  ->  ch ) ) )
32com23 74 . 2  |-  ( ph  ->  ( ps  ->  (
( x  e.  A  /\  y  e.  B
)  ->  ch )
) )
43ralrimdvv 2608 1  |-  ( ph  ->  ( ps  ->  A. x  e.  A  A. y  e.  B  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    e. wcel 1621   A.wral 2516
This theorem is referenced by:  isosolem  5743  kgencn2  17179  fbunfip  17491  reconn  18260  c1lip1  19271  cdj3i  22946  ispridl2  25995  ispridlc  26027
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-gen 1536  ax-17 1628  ax-4 1692
This theorem depends on definitions:  df-bi 179  df-an 362  df-nf 1540  df-ral 2520
  Copyright terms: Public domain W3C validator