MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankelb Unicode version

Theorem rankelb 7429
Description: The membership relation is inherited by the rank function. Proposition 9.16 of [TakeutiZaring] p. 79. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankelb  |-  ( B  e.  U. ( R1
" On )  -> 
( A  e.  B  ->  ( rank `  A
)  e.  ( rank `  B ) ) )

Proof of Theorem rankelb
StepHypRef Expression
1 r1elssi 7410 . . . . . 6  |-  ( B  e.  U. ( R1
" On )  ->  B  C_  U. ( R1
" On ) )
21sseld 3121 . . . . 5  |-  ( B  e.  U. ( R1
" On )  -> 
( A  e.  B  ->  A  e.  U. ( R1 " On ) ) )
3 rankidn 7427 . . . . 5  |-  ( A  e.  U. ( R1
" On )  ->  -.  A  e.  ( R1 `  ( rank `  A
) ) )
42, 3syl6 31 . . . 4  |-  ( B  e.  U. ( R1
" On )  -> 
( A  e.  B  ->  -.  A  e.  ( R1 `  ( rank `  A ) ) ) )
54imp 420 . . 3  |-  ( ( B  e.  U. ( R1 " On )  /\  A  e.  B )  ->  -.  A  e.  ( R1 `  ( rank `  A ) ) )
6 rankon 7400 . . . . 5  |-  ( rank `  B )  e.  On
7 rankon 7400 . . . . 5  |-  ( rank `  A )  e.  On
8 ontri1 4363 . . . . 5  |-  ( ( ( rank `  B
)  e.  On  /\  ( rank `  A )  e.  On )  ->  (
( rank `  B )  C_  ( rank `  A
)  <->  -.  ( rank `  A )  e.  (
rank `  B )
) )
96, 7, 8mp2an 656 . . . 4  |-  ( (
rank `  B )  C_  ( rank `  A
)  <->  -.  ( rank `  A )  e.  (
rank `  B )
)
10 rankdmr1 7406 . . . . . 6  |-  ( rank `  B )  e.  dom  R1
11 rankdmr1 7406 . . . . . 6  |-  ( rank `  A )  e.  dom  R1
12 r1ord3g 7384 . . . . . 6  |-  ( ( ( rank `  B
)  e.  dom  R1  /\  ( rank `  A
)  e.  dom  R1 )  ->  ( ( rank `  B )  C_  ( rank `  A )  -> 
( R1 `  ( rank `  B ) ) 
C_  ( R1 `  ( rank `  A )
) ) )
1310, 11, 12mp2an 656 . . . . 5  |-  ( (
rank `  B )  C_  ( rank `  A
)  ->  ( R1 `  ( rank `  B
) )  C_  ( R1 `  ( rank `  A
) ) )
14 r1rankidb 7409 . . . . . . 7  |-  ( B  e.  U. ( R1
" On )  ->  B  C_  ( R1 `  ( rank `  B )
) )
1514sselda 3122 . . . . . 6  |-  ( ( B  e.  U. ( R1 " On )  /\  A  e.  B )  ->  A  e.  ( R1
`  ( rank `  B
) ) )
16 ssel 3116 . . . . . 6  |-  ( ( R1 `  ( rank `  B ) )  C_  ( R1 `  ( rank `  A ) )  -> 
( A  e.  ( R1 `  ( rank `  B ) )  ->  A  e.  ( R1 `  ( rank `  A
) ) ) )
1715, 16syl5com 28 . . . . 5  |-  ( ( B  e.  U. ( R1 " On )  /\  A  e.  B )  ->  ( ( R1 `  ( rank `  B )
)  C_  ( R1 `  ( rank `  A
) )  ->  A  e.  ( R1 `  ( rank `  A ) ) ) )
1813, 17syl5 30 . . . 4  |-  ( ( B  e.  U. ( R1 " On )  /\  A  e.  B )  ->  ( ( rank `  B
)  C_  ( rank `  A )  ->  A  e.  ( R1 `  ( rank `  A ) ) ) )
199, 18syl5bir 211 . . 3  |-  ( ( B  e.  U. ( R1 " On )  /\  A  e.  B )  ->  ( -.  ( rank `  A )  e.  (
rank `  B )  ->  A  e.  ( R1
`  ( rank `  A
) ) ) )
205, 19mt3d 119 . 2  |-  ( ( B  e.  U. ( R1 " On )  /\  A  e.  B )  ->  ( rank `  A
)  e.  ( rank `  B ) )
2120ex 425 1  |-  ( B  e.  U. ( R1
" On )  -> 
( A  e.  B  ->  ( rank `  A
)  e.  ( rank `  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    e. wcel 1621    C_ wss 3094   U.cuni 3768   Oncon0 4329   dom cdm 4626   "cima 4629   ` cfv 4638   R1cr1 7367   rankcrnk 7368
This theorem is referenced by:  wfelirr  7430  rankval3b  7431  rankel  7444  rankunb  7455  rankuni2b  7458  rankcf  8332
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-recs 6321  df-rdg 6356  df-r1 7369  df-rank 7370
  Copyright terms: Public domain W3C validator