MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankprb Unicode version

Theorem rankprb 7613
Description: The rank of an unordered pair. Part of Exercise 30 of [Enderton] p. 207. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
rankprb  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  { A ,  B }
)  =  suc  (
( rank `  A )  u.  ( rank `  B
) ) )

Proof of Theorem rankprb
StepHypRef Expression
1 snwf 7571 . . . 4  |-  ( A  e.  U. ( R1
" On )  ->  { A }  e.  U. ( R1 " On ) )
2 snwf 7571 . . . 4  |-  ( B  e.  U. ( R1
" On )  ->  { B }  e.  U. ( R1 " On ) )
3 rankunb 7612 . . . 4  |-  ( ( { A }  e.  U. ( R1 " On )  /\  { B }  e.  U. ( R1 " On ) )  ->  ( rank `  ( { A }  u.  { B } ) )  =  ( ( rank `  { A } )  u.  ( rank `  { B }
) ) )
41, 2, 3syl2an 463 . . 3  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  ( { A }  u.  { B } ) )  =  ( ( rank `  { A } )  u.  ( rank `  { B }
) ) )
5 ranksnb 7589 . . . 4  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  { A } )  =  suc  ( rank `  A )
)
6 ranksnb 7589 . . . 4  |-  ( B  e.  U. ( R1
" On )  -> 
( rank `  { B } )  =  suc  ( rank `  B )
)
7 uneq12 3400 . . . 4  |-  ( ( ( rank `  { A } )  =  suc  ( rank `  A )  /\  ( rank `  { B } )  =  suc  ( rank `  B )
)  ->  ( ( rank `  { A }
)  u.  ( rank `  { B } ) )  =  ( suc  ( rank `  A
)  u.  suc  ( rank `  B ) ) )
85, 6, 7syl2an 463 . . 3  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( ( rank `  { A } )  u.  ( rank `  { B } ) )  =  ( suc  ( rank `  A )  u.  suc  ( rank `  B )
) )
94, 8eqtrd 2390 . 2  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  ( { A }  u.  { B } ) )  =  ( suc  ( rank `  A )  u.  suc  ( rank `  B )
) )
10 df-pr 3723 . . 3  |-  { A ,  B }  =  ( { A }  u.  { B } )
1110fveq2i 5611 . 2  |-  ( rank `  { A ,  B } )  =  (
rank `  ( { A }  u.  { B } ) )
12 rankon 7557 . . . 4  |-  ( rank `  A )  e.  On
1312onordi 4579 . . 3  |-  Ord  ( rank `  A )
14 rankon 7557 . . . 4  |-  ( rank `  B )  e.  On
1514onordi 4579 . . 3  |-  Ord  ( rank `  B )
16 ordsucun 4698 . . 3  |-  ( ( Ord  ( rank `  A
)  /\  Ord  ( rank `  B ) )  ->  suc  ( ( rank `  A
)  u.  ( rank `  B ) )  =  ( suc  ( rank `  A )  u.  suc  ( rank `  B )
) )
1713, 15, 16mp2an 653 . 2  |-  suc  (
( rank `  A )  u.  ( rank `  B
) )  =  ( suc  ( rank `  A
)  u.  suc  ( rank `  B ) )
189, 11, 173eqtr4g 2415 1  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  { A ,  B }
)  =  suc  (
( rank `  A )  u.  ( rank `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710    u. cun 3226   {csn 3716   {cpr 3717   U.cuni 3908   Ord word 4473   Oncon0 4474   suc csuc 4476   "cima 4774   ` cfv 5337   R1cr1 7524   rankcrnk 7525
This theorem is referenced by:  rankopb  7614  rankpr  7619  r1limwun  8448  rankaltopb  25072
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-recs 6475  df-rdg 6510  df-r1 7526  df-rank 7527
  Copyright terms: Public domain W3C validator