MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankpw Unicode version

Theorem rankpw 7605
Description: The rank of a power set. Part of Exercise 30 of [Enderton] p. 207. (Contributed by NM, 22-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypothesis
Ref Expression
rankpw.1  |-  A  e. 
_V
Assertion
Ref Expression
rankpw  |-  ( rank `  ~P A )  =  suc  ( rank `  A
)

Proof of Theorem rankpw
StepHypRef Expression
1 rankpw.1 . . 3  |-  A  e. 
_V
2 unir1 7575 . . 3  |-  U. ( R1 " On )  =  _V
31, 2eleqtrri 2431 . 2  |-  A  e. 
U. ( R1 " On )
4 rankpwi 7585 . 2  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  ~P A )  =  suc  ( rank `  A ) )
53, 4ax-mp 8 1  |-  ( rank `  ~P A )  =  suc  ( rank `  A
)
Colors of variables: wff set class
Syntax hints:    = wceq 1642    e. wcel 1710   _Vcvv 2864   ~Pcpw 3701   U.cuni 3908   Oncon0 4474   suc csuc 4476   "cima 4774   ` cfv 5337   R1cr1 7524   rankcrnk 7525
This theorem is referenced by:  ranklim  7606  r1pwOLD  7608  rankuni  7625  rankc2  7633  rankxpu  7638  rankpwg  25358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-reg 7396  ax-inf2 7432
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-recs 6475  df-rdg 6510  df-r1 7526  df-rank 7527
  Copyright terms: Public domain W3C validator