MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankpwi Unicode version

Theorem rankpwi 7492
Description: The rank of a power set. Part of Exercise 30 of [Enderton] p. 207. (Contributed by Mario Carneiro, 3-Jun-2013.)
Assertion
Ref Expression
rankpwi  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  ~P A )  =  suc  ( rank `  A ) )

Proof of Theorem rankpwi
StepHypRef Expression
1 rankidn 7491 . . . 4  |-  ( A  e.  U. ( R1
" On )  ->  -.  A  e.  ( R1 `  ( rank `  A
) ) )
2 rankon 7464 . . . . . . 7  |-  ( rank `  A )  e.  On
3 r1suc 7439 . . . . . . 7  |-  ( (
rank `  A )  e.  On  ->  ( R1 ` 
suc  ( rank `  A
) )  =  ~P ( R1 `  ( rank `  A ) ) )
42, 3ax-mp 10 . . . . . 6  |-  ( R1
`  suc  ( rank `  A ) )  =  ~P ( R1 `  ( rank `  A )
)
54eleq2i 2350 . . . . 5  |-  ( ~P A  e.  ( R1
`  suc  ( rank `  A ) )  <->  ~P A  e.  ~P ( R1 `  ( rank `  A )
) )
6 elpwi 3636 . . . . . 6  |-  ( ~P A  e.  ~P ( R1 `  ( rank `  A
) )  ->  ~P A  C_  ( R1 `  ( rank `  A )
) )
7 pwidg 3640 . . . . . . 7  |-  ( A  e.  U. ( R1
" On )  ->  A  e.  ~P A
)
8 ssel 3177 . . . . . . 7  |-  ( ~P A  C_  ( R1 `  ( rank `  A
) )  ->  ( A  e.  ~P A  ->  A  e.  ( R1
`  ( rank `  A
) ) ) )
97, 8syl5com 28 . . . . . 6  |-  ( A  e.  U. ( R1
" On )  -> 
( ~P A  C_  ( R1 `  ( rank `  A ) )  ->  A  e.  ( R1 `  ( rank `  A
) ) ) )
106, 9syl5 30 . . . . 5  |-  ( A  e.  U. ( R1
" On )  -> 
( ~P A  e. 
~P ( R1 `  ( rank `  A )
)  ->  A  e.  ( R1 `  ( rank `  A ) ) ) )
115, 10syl5bi 210 . . . 4  |-  ( A  e.  U. ( R1
" On )  -> 
( ~P A  e.  ( R1 `  suc  ( rank `  A )
)  ->  A  e.  ( R1 `  ( rank `  A ) ) ) )
121, 11mtod 170 . . 3  |-  ( A  e.  U. ( R1
" On )  ->  -.  ~P A  e.  ( R1 `  suc  ( rank `  A ) ) )
13 r1rankidb 7473 . . . . . . 7  |-  ( A  e.  U. ( R1
" On )  ->  A  C_  ( R1 `  ( rank `  A )
) )
14 sspwb 4224 . . . . . . 7  |-  ( A 
C_  ( R1 `  ( rank `  A )
)  <->  ~P A  C_  ~P ( R1 `  ( rank `  A ) ) )
1513, 14sylib 190 . . . . . 6  |-  ( A  e.  U. ( R1
" On )  ->  ~P A  C_  ~P ( R1 `  ( rank `  A
) ) )
1615, 4syl6sseqr 3228 . . . . 5  |-  ( A  e.  U. ( R1
" On )  ->  ~P A  C_  ( R1
`  suc  ( rank `  A ) ) )
17 fvex 5501 . . . . . 6  |-  ( R1
`  suc  ( rank `  A ) )  e. 
_V
1817elpw2 4171 . . . . 5  |-  ( ~P A  e.  ~P ( R1 `  suc  ( rank `  A ) )  <->  ~P A  C_  ( R1 `  suc  ( rank `  A )
) )
1916, 18sylibr 205 . . . 4  |-  ( A  e.  U. ( R1
" On )  ->  ~P A  e.  ~P ( R1 `  suc  ( rank `  A ) ) )
202onsuci 4630 . . . . 5  |-  suc  ( rank `  A )  e.  On
21 r1suc 7439 . . . . 5  |-  ( suc  ( rank `  A
)  e.  On  ->  ( R1 `  suc  suc  ( rank `  A )
)  =  ~P ( R1 `  suc  ( rank `  A ) ) )
2220, 21ax-mp 10 . . . 4  |-  ( R1
`  suc  suc  ( rank `  A ) )  =  ~P ( R1 `  suc  ( rank `  A
) )
2319, 22syl6eleqr 2377 . . 3  |-  ( A  e.  U. ( R1
" On )  ->  ~P A  e.  ( R1 `  suc  suc  ( rank `  A ) ) )
24 pwwf 7476 . . . 4  |-  ( A  e.  U. ( R1
" On )  <->  ~P A  e.  U. ( R1 " On ) )
25 rankr1c 7490 . . . 4  |-  ( ~P A  e.  U. ( R1 " On )  -> 
( suc  ( rank `  A )  =  (
rank `  ~P A )  <-> 
( -.  ~P A  e.  ( R1 `  suc  ( rank `  A )
)  /\  ~P A  e.  ( R1 `  suc  suc  ( rank `  A
) ) ) ) )
2624, 25sylbi 189 . . 3  |-  ( A  e.  U. ( R1
" On )  -> 
( suc  ( rank `  A )  =  (
rank `  ~P A )  <-> 
( -.  ~P A  e.  ( R1 `  suc  ( rank `  A )
)  /\  ~P A  e.  ( R1 `  suc  suc  ( rank `  A
) ) ) ) )
2712, 23, 26mpbir2and 890 . 2  |-  ( A  e.  U. ( R1
" On )  ->  suc  ( rank `  A
)  =  ( rank `  ~P A ) )
2827eqcomd 2291 1  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  ~P A )  =  suc  ( rank `  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1625    e. wcel 1687    C_ wss 3155   ~Pcpw 3628   U.cuni 3830   Oncon0 4393   suc csuc 4395   "cima 4693   ` cfv 5223   R1cr1 7431   rankcrnk 7432
This theorem is referenced by:  rankpw  7512  r1pw  7514  r1pwcl  7516
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1638  ax-8 1646  ax-13 1689  ax-14 1691  ax-6 1706  ax-7 1711  ax-11 1718  ax-12 1870  ax-ext 2267  ax-rep 4134  ax-sep 4144  ax-nul 4152  ax-pow 4189  ax-pr 4215  ax-un 4513
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1531  df-nf 1534  df-sb 1633  df-eu 2150  df-mo 2151  df-clab 2273  df-cleq 2279  df-clel 2282  df-nfc 2411  df-ne 2451  df-ral 2551  df-rex 2552  df-reu 2553  df-rab 2555  df-v 2793  df-sbc 2995  df-csb 3085  df-dif 3158  df-un 3160  df-in 3162  df-ss 3169  df-pss 3171  df-nul 3459  df-if 3569  df-pw 3630  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3831  df-int 3866  df-iun 3910  df-br 4027  df-opab 4081  df-mpt 4082  df-tr 4117  df-eprel 4306  df-id 4310  df-po 4315  df-so 4316  df-fr 4353  df-we 4355  df-ord 4396  df-on 4397  df-lim 4398  df-suc 4399  df-om 4658  df-xp 4696  df-rel 4697  df-cnv 4698  df-co 4699  df-dm 4700  df-rn 4701  df-res 4702  df-ima 4703  df-fun 5225  df-fn 5226  df-f 5227  df-f1 5228  df-fo 5229  df-f1o 5230  df-fv 5231  df-recs 6385  df-rdg 6420  df-r1 7433  df-rank 7434
  Copyright terms: Public domain W3C validator