MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankssb Unicode version

Theorem rankssb 7734
Description: The subset relation is inherited by the rank function. Exercise 1 of [TakeutiZaring] p. 80. (Contributed by NM, 25-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankssb  |-  ( B  e.  U. ( R1
" On )  -> 
( A  C_  B  ->  ( rank `  A
)  C_  ( rank `  B ) ) )

Proof of Theorem rankssb
StepHypRef Expression
1 simpr 448 . . . 4  |-  ( ( B  e.  U. ( R1 " On )  /\  A  C_  B )  ->  A  C_  B )
2 r1rankidb 7690 . . . . 5  |-  ( B  e.  U. ( R1
" On )  ->  B  C_  ( R1 `  ( rank `  B )
) )
32adantr 452 . . . 4  |-  ( ( B  e.  U. ( R1 " On )  /\  A  C_  B )  ->  B  C_  ( R1 `  ( rank `  B )
) )
41, 3sstrd 3322 . . 3  |-  ( ( B  e.  U. ( R1 " On )  /\  A  C_  B )  ->  A  C_  ( R1 `  ( rank `  B )
) )
5 sswf 7694 . . . 4  |-  ( ( B  e.  U. ( R1 " On )  /\  A  C_  B )  ->  A  e.  U. ( R1 " On ) )
6 rankdmr1 7687 . . . 4  |-  ( rank `  B )  e.  dom  R1
7 rankr1bg 7689 . . . 4  |-  ( ( A  e.  U. ( R1 " On )  /\  ( rank `  B )  e.  dom  R1 )  -> 
( A  C_  ( R1 `  ( rank `  B
) )  <->  ( rank `  A )  C_  ( rank `  B ) ) )
85, 6, 7sylancl 644 . . 3  |-  ( ( B  e.  U. ( R1 " On )  /\  A  C_  B )  -> 
( A  C_  ( R1 `  ( rank `  B
) )  <->  ( rank `  A )  C_  ( rank `  B ) ) )
94, 8mpbid 202 . 2  |-  ( ( B  e.  U. ( R1 " On )  /\  A  C_  B )  -> 
( rank `  A )  C_  ( rank `  B
) )
109ex 424 1  |-  ( B  e.  U. ( R1
" On )  -> 
( A  C_  B  ->  ( rank `  A
)  C_  ( rank `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1721    C_ wss 3284   U.cuni 3979   Oncon0 4545   dom cdm 4841   "cima 4844   ` cfv 5417   R1cr1 7648   rankcrnk 7649
This theorem is referenced by:  rankss  7735  rankunb  7736  rankuni2b  7739  rankr1id  7748
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-recs 6596  df-rdg 6631  df-r1 7650  df-rank 7651
  Copyright terms: Public domain W3C validator