MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankunb Unicode version

Theorem rankunb 7702
Description: The rank of the union of two sets. Theorem 15.17(iii) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankunb  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  ( A  u.  B )
)  =  ( (
rank `  A )  u.  ( rank `  B
) ) )

Proof of Theorem rankunb
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unwf 7662 . . . . . . 7  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  <-> 
( A  u.  B
)  e.  U. ( R1 " On ) )
2 rankval3b 7678 . . . . . . 7  |-  ( ( A  u.  B )  e.  U. ( R1
" On )  -> 
( rank `  ( A  u.  B ) )  = 
|^| { y  e.  On  |  A. x  e.  ( A  u.  B ) ( rank `  x
)  e.  y } )
31, 2sylbi 188 . . . . . 6  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  ( A  u.  B )
)  =  |^| { y  e.  On  |  A. x  e.  ( A  u.  B ) ( rank `  x )  e.  y } )
43eleq2d 2447 . . . . 5  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( x  e.  ( rank `  ( A  u.  B )
)  <->  x  e.  |^| { y  e.  On  |  A. x  e.  ( A  u.  B ) ( rank `  x )  e.  y } ) )
5 vex 2895 . . . . . 6  |-  x  e. 
_V
65elintrab 3997 . . . . 5  |-  ( x  e.  |^| { y  e.  On  |  A. x  e.  ( A  u.  B
) ( rank `  x
)  e.  y }  <->  A. y  e.  On  ( A. x  e.  ( A  u.  B ) ( rank `  x
)  e.  y  ->  x  e.  y )
)
74, 6syl6bb 253 . . . 4  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( x  e.  ( rank `  ( A  u.  B )
)  <->  A. y  e.  On  ( A. x  e.  ( A  u.  B ) ( rank `  x
)  e.  y  ->  x  e.  y )
) )
8 elun 3424 . . . . . . 7  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
9 rankelb 7676 . . . . . . . . 9  |-  ( A  e.  U. ( R1
" On )  -> 
( x  e.  A  ->  ( rank `  x
)  e.  ( rank `  A ) ) )
10 elun1 3450 . . . . . . . . 9  |-  ( (
rank `  x )  e.  ( rank `  A
)  ->  ( rank `  x )  e.  ( ( rank `  A
)  u.  ( rank `  B ) ) )
119, 10syl6 31 . . . . . . . 8  |-  ( A  e.  U. ( R1
" On )  -> 
( x  e.  A  ->  ( rank `  x
)  e.  ( (
rank `  A )  u.  ( rank `  B
) ) ) )
12 rankelb 7676 . . . . . . . . 9  |-  ( B  e.  U. ( R1
" On )  -> 
( x  e.  B  ->  ( rank `  x
)  e.  ( rank `  B ) ) )
13 elun2 3451 . . . . . . . . 9  |-  ( (
rank `  x )  e.  ( rank `  B
)  ->  ( rank `  x )  e.  ( ( rank `  A
)  u.  ( rank `  B ) ) )
1412, 13syl6 31 . . . . . . . 8  |-  ( B  e.  U. ( R1
" On )  -> 
( x  e.  B  ->  ( rank `  x
)  e.  ( (
rank `  A )  u.  ( rank `  B
) ) ) )
1511, 14jaao 496 . . . . . . 7  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( ( x  e.  A  \/  x  e.  B )  ->  ( rank `  x )  e.  ( ( rank `  A
)  u.  ( rank `  B ) ) ) )
168, 15syl5bi 209 . . . . . 6  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( x  e.  ( A  u.  B
)  ->  ( rank `  x )  e.  ( ( rank `  A
)  u.  ( rank `  B ) ) ) )
1716ralrimiv 2724 . . . . 5  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  A. x  e.  ( A  u.  B ) ( rank `  x
)  e.  ( (
rank `  A )  u.  ( rank `  B
) ) )
18 rankon 7647 . . . . . . 7  |-  ( rank `  A )  e.  On
19 rankon 7647 . . . . . . 7  |-  ( rank `  B )  e.  On
2018, 19onun2i 4630 . . . . . 6  |-  ( (
rank `  A )  u.  ( rank `  B
) )  e.  On
21 eleq2 2441 . . . . . . . . 9  |-  ( y  =  ( ( rank `  A )  u.  ( rank `  B ) )  ->  ( ( rank `  x )  e.  y  <-> 
( rank `  x )  e.  ( ( rank `  A
)  u.  ( rank `  B ) ) ) )
2221ralbidv 2662 . . . . . . . 8  |-  ( y  =  ( ( rank `  A )  u.  ( rank `  B ) )  ->  ( A. x  e.  ( A  u.  B
) ( rank `  x
)  e.  y  <->  A. x  e.  ( A  u.  B
) ( rank `  x
)  e.  ( (
rank `  A )  u.  ( rank `  B
) ) ) )
23 eleq2 2441 . . . . . . . 8  |-  ( y  =  ( ( rank `  A )  u.  ( rank `  B ) )  ->  ( x  e.  y  <->  x  e.  (
( rank `  A )  u.  ( rank `  B
) ) ) )
2422, 23imbi12d 312 . . . . . . 7  |-  ( y  =  ( ( rank `  A )  u.  ( rank `  B ) )  ->  ( ( A. x  e.  ( A  u.  B ) ( rank `  x )  e.  y  ->  x  e.  y )  <->  ( A. x  e.  ( A  u.  B
) ( rank `  x
)  e.  ( (
rank `  A )  u.  ( rank `  B
) )  ->  x  e.  ( ( rank `  A
)  u.  ( rank `  B ) ) ) ) )
2524rspcv 2984 . . . . . 6  |-  ( ( ( rank `  A
)  u.  ( rank `  B ) )  e.  On  ->  ( A. y  e.  On  ( A. x  e.  ( A  u.  B )
( rank `  x )  e.  y  ->  x  e.  y )  ->  ( A. x  e.  ( A  u.  B )
( rank `  x )  e.  ( ( rank `  A
)  u.  ( rank `  B ) )  ->  x  e.  ( ( rank `  A )  u.  ( rank `  B
) ) ) ) )
2620, 25ax-mp 8 . . . . 5  |-  ( A. y  e.  On  ( A. x  e.  ( A  u.  B )
( rank `  x )  e.  y  ->  x  e.  y )  ->  ( A. x  e.  ( A  u.  B )
( rank `  x )  e.  ( ( rank `  A
)  u.  ( rank `  B ) )  ->  x  e.  ( ( rank `  A )  u.  ( rank `  B
) ) ) )
2717, 26syl5com 28 . . . 4  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( A. y  e.  On  ( A. x  e.  ( A  u.  B
) ( rank `  x
)  e.  y  ->  x  e.  y )  ->  x  e.  ( (
rank `  A )  u.  ( rank `  B
) ) ) )
287, 27sylbid 207 . . 3  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( x  e.  ( rank `  ( A  u.  B )
)  ->  x  e.  ( ( rank `  A
)  u.  ( rank `  B ) ) ) )
2928ssrdv 3290 . 2  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  ( A  u.  B )
)  C_  ( ( rank `  A )  u.  ( rank `  B
) ) )
30 ssun1 3446 . . . . 5  |-  A  C_  ( A  u.  B
)
31 rankssb 7700 . . . . 5  |-  ( ( A  u.  B )  e.  U. ( R1
" On )  -> 
( A  C_  ( A  u.  B )  ->  ( rank `  A
)  C_  ( rank `  ( A  u.  B
) ) ) )
3230, 31mpi 17 . . . 4  |-  ( ( A  u.  B )  e.  U. ( R1
" On )  -> 
( rank `  A )  C_  ( rank `  ( A  u.  B )
) )
33 ssun2 3447 . . . . 5  |-  B  C_  ( A  u.  B
)
34 rankssb 7700 . . . . 5  |-  ( ( A  u.  B )  e.  U. ( R1
" On )  -> 
( B  C_  ( A  u.  B )  ->  ( rank `  B
)  C_  ( rank `  ( A  u.  B
) ) ) )
3533, 34mpi 17 . . . 4  |-  ( ( A  u.  B )  e.  U. ( R1
" On )  -> 
( rank `  B )  C_  ( rank `  ( A  u.  B )
) )
3632, 35unssd 3459 . . 3  |-  ( ( A  u.  B )  e.  U. ( R1
" On )  -> 
( ( rank `  A
)  u.  ( rank `  B ) )  C_  ( rank `  ( A  u.  B ) ) )
371, 36sylbi 188 . 2  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( ( rank `  A )  u.  ( rank `  B ) ) 
C_  ( rank `  ( A  u.  B )
) )
3829, 37eqssd 3301 1  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  ( A  u.  B )
)  =  ( (
rank `  A )  u.  ( rank `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2642   {crab 2646    u. cun 3254    C_ wss 3256   U.cuni 3950   |^|cint 3985   Oncon0 4515   "cima 4814   ` cfv 5387   R1cr1 7614   rankcrnk 7615
This theorem is referenced by:  rankprb  7703  rankopb  7704  rankun  7708  rankaltopb  25531
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-recs 6562  df-rdg 6597  df-r1 7616  df-rank 7617
  Copyright terms: Public domain W3C validator