MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankunb Unicode version

Theorem rankunb 7476
Description: The rank of the union of two sets. Theorem 15.17(iii) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankunb  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  ( A  u.  B )
)  =  ( (
rank `  A )  u.  ( rank `  B
) ) )

Proof of Theorem rankunb
StepHypRef Expression
1 unwf 7436 . . . . . . 7  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  <-> 
( A  u.  B
)  e.  U. ( R1 " On ) )
2 rankval3b 7452 . . . . . . 7  |-  ( ( A  u.  B )  e.  U. ( R1
" On )  -> 
( rank `  ( A  u.  B ) )  = 
|^| { y  e.  On  |  A. x  e.  ( A  u.  B ) ( rank `  x
)  e.  y } )
31, 2sylbi 189 . . . . . 6  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  ( A  u.  B )
)  =  |^| { y  e.  On  |  A. x  e.  ( A  u.  B ) ( rank `  x )  e.  y } )
43eleq2d 2323 . . . . 5  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( x  e.  ( rank `  ( A  u.  B )
)  <->  x  e.  |^| { y  e.  On  |  A. x  e.  ( A  u.  B ) ( rank `  x )  e.  y } ) )
5 vex 2760 . . . . . 6  |-  x  e. 
_V
65elintrab 3834 . . . . 5  |-  ( x  e.  |^| { y  e.  On  |  A. x  e.  ( A  u.  B
) ( rank `  x
)  e.  y }  <->  A. y  e.  On  ( A. x  e.  ( A  u.  B ) ( rank `  x
)  e.  y  ->  x  e.  y )
)
74, 6syl6bb 254 . . . 4  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( x  e.  ( rank `  ( A  u.  B )
)  <->  A. y  e.  On  ( A. x  e.  ( A  u.  B ) ( rank `  x
)  e.  y  ->  x  e.  y )
) )
8 elun 3277 . . . . . . 7  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
9 rankelb 7450 . . . . . . . . 9  |-  ( A  e.  U. ( R1
" On )  -> 
( x  e.  A  ->  ( rank `  x
)  e.  ( rank `  A ) ) )
10 elun1 3303 . . . . . . . . 9  |-  ( (
rank `  x )  e.  ( rank `  A
)  ->  ( rank `  x )  e.  ( ( rank `  A
)  u.  ( rank `  B ) ) )
119, 10syl6 31 . . . . . . . 8  |-  ( A  e.  U. ( R1
" On )  -> 
( x  e.  A  ->  ( rank `  x
)  e.  ( (
rank `  A )  u.  ( rank `  B
) ) ) )
12 rankelb 7450 . . . . . . . . 9  |-  ( B  e.  U. ( R1
" On )  -> 
( x  e.  B  ->  ( rank `  x
)  e.  ( rank `  B ) ) )
13 elun2 3304 . . . . . . . . 9  |-  ( (
rank `  x )  e.  ( rank `  B
)  ->  ( rank `  x )  e.  ( ( rank `  A
)  u.  ( rank `  B ) ) )
1412, 13syl6 31 . . . . . . . 8  |-  ( B  e.  U. ( R1
" On )  -> 
( x  e.  B  ->  ( rank `  x
)  e.  ( (
rank `  A )  u.  ( rank `  B
) ) ) )
1511, 14jaao 497 . . . . . . 7  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( ( x  e.  A  \/  x  e.  B )  ->  ( rank `  x )  e.  ( ( rank `  A
)  u.  ( rank `  B ) ) ) )
168, 15syl5bi 210 . . . . . 6  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( x  e.  ( A  u.  B
)  ->  ( rank `  x )  e.  ( ( rank `  A
)  u.  ( rank `  B ) ) ) )
1716ralrimiv 2598 . . . . 5  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  A. x  e.  ( A  u.  B ) ( rank `  x
)  e.  ( (
rank `  A )  u.  ( rank `  B
) ) )
18 rankon 7421 . . . . . . 7  |-  ( rank `  A )  e.  On
19 rankon 7421 . . . . . . 7  |-  ( rank `  B )  e.  On
2018, 19onun2i 4466 . . . . . 6  |-  ( (
rank `  A )  u.  ( rank `  B
) )  e.  On
21 eleq2 2317 . . . . . . . . 9  |-  ( y  =  ( ( rank `  A )  u.  ( rank `  B ) )  ->  ( ( rank `  x )  e.  y  <-> 
( rank `  x )  e.  ( ( rank `  A
)  u.  ( rank `  B ) ) ) )
2221ralbidv 2536 . . . . . . . 8  |-  ( y  =  ( ( rank `  A )  u.  ( rank `  B ) )  ->  ( A. x  e.  ( A  u.  B
) ( rank `  x
)  e.  y  <->  A. x  e.  ( A  u.  B
) ( rank `  x
)  e.  ( (
rank `  A )  u.  ( rank `  B
) ) ) )
23 eleq2 2317 . . . . . . . 8  |-  ( y  =  ( ( rank `  A )  u.  ( rank `  B ) )  ->  ( x  e.  y  <->  x  e.  (
( rank `  A )  u.  ( rank `  B
) ) ) )
2422, 23imbi12d 313 . . . . . . 7  |-  ( y  =  ( ( rank `  A )  u.  ( rank `  B ) )  ->  ( ( A. x  e.  ( A  u.  B ) ( rank `  x )  e.  y  ->  x  e.  y )  <->  ( A. x  e.  ( A  u.  B
) ( rank `  x
)  e.  ( (
rank `  A )  u.  ( rank `  B
) )  ->  x  e.  ( ( rank `  A
)  u.  ( rank `  B ) ) ) ) )
2524rcla4v 2848 . . . . . 6  |-  ( ( ( rank `  A
)  u.  ( rank `  B ) )  e.  On  ->  ( A. y  e.  On  ( A. x  e.  ( A  u.  B )
( rank `  x )  e.  y  ->  x  e.  y )  ->  ( A. x  e.  ( A  u.  B )
( rank `  x )  e.  ( ( rank `  A
)  u.  ( rank `  B ) )  ->  x  e.  ( ( rank `  A )  u.  ( rank `  B
) ) ) ) )
2620, 25ax-mp 10 . . . . 5  |-  ( A. y  e.  On  ( A. x  e.  ( A  u.  B )
( rank `  x )  e.  y  ->  x  e.  y )  ->  ( A. x  e.  ( A  u.  B )
( rank `  x )  e.  ( ( rank `  A
)  u.  ( rank `  B ) )  ->  x  e.  ( ( rank `  A )  u.  ( rank `  B
) ) ) )
2717, 26syl5com 28 . . . 4  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( A. y  e.  On  ( A. x  e.  ( A  u.  B
) ( rank `  x
)  e.  y  ->  x  e.  y )  ->  x  e.  ( (
rank `  A )  u.  ( rank `  B
) ) ) )
287, 27sylbid 208 . . 3  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( x  e.  ( rank `  ( A  u.  B )
)  ->  x  e.  ( ( rank `  A
)  u.  ( rank `  B ) ) ) )
2928ssrdv 3146 . 2  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  ( A  u.  B )
)  C_  ( ( rank `  A )  u.  ( rank `  B
) ) )
30 ssun1 3299 . . . . 5  |-  A  C_  ( A  u.  B
)
31 rankssb 7474 . . . . 5  |-  ( ( A  u.  B )  e.  U. ( R1
" On )  -> 
( A  C_  ( A  u.  B )  ->  ( rank `  A
)  C_  ( rank `  ( A  u.  B
) ) ) )
3230, 31mpi 18 . . . 4  |-  ( ( A  u.  B )  e.  U. ( R1
" On )  -> 
( rank `  A )  C_  ( rank `  ( A  u.  B )
) )
33 ssun2 3300 . . . . 5  |-  B  C_  ( A  u.  B
)
34 rankssb 7474 . . . . 5  |-  ( ( A  u.  B )  e.  U. ( R1
" On )  -> 
( B  C_  ( A  u.  B )  ->  ( rank `  B
)  C_  ( rank `  ( A  u.  B
) ) ) )
3533, 34mpi 18 . . . 4  |-  ( ( A  u.  B )  e.  U. ( R1
" On )  -> 
( rank `  B )  C_  ( rank `  ( A  u.  B )
) )
3632, 35unssd 3312 . . 3  |-  ( ( A  u.  B )  e.  U. ( R1
" On )  -> 
( ( rank `  A
)  u.  ( rank `  B ) )  C_  ( rank `  ( A  u.  B ) ) )
371, 36sylbi 189 . 2  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( ( rank `  A )  u.  ( rank `  B ) ) 
C_  ( rank `  ( A  u.  B )
) )
3829, 37eqssd 3157 1  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  ( A  u.  B )
)  =  ( (
rank `  A )  u.  ( rank `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2516   {crab 2520    u. cun 3111    C_ wss 3113   U.cuni 3787   |^|cint 3822   Oncon0 4350   "cima 4650   ` cfv 4659   R1cr1 7388   rankcrnk 7389
This theorem is referenced by:  rankprb  7477  rankopb  7478  rankun  7482  rankaltopb  23874
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-reu 2523  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-recs 6342  df-rdg 6377  df-r1 7390  df-rank 7391
  Copyright terms: Public domain W3C validator