MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankuni Unicode version

Theorem rankuni 7778
Description: The rank of a union. Part of Exercise 4 of [Kunen] p. 107. (Contributed by NM, 15-Sep-2006.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankuni  |-  ( rank `  U. A )  = 
U. ( rank `  A
)

Proof of Theorem rankuni
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4016 . . . . 5  |-  ( x  =  A  ->  U. x  =  U. A )
21fveq2d 5723 . . . 4  |-  ( x  =  A  ->  ( rank `  U. x )  =  ( rank `  U. A ) )
3 fveq2 5719 . . . . 5  |-  ( x  =  A  ->  ( rank `  x )  =  ( rank `  A
) )
43unieqd 4018 . . . 4  |-  ( x  =  A  ->  U. ( rank `  x )  = 
U. ( rank `  A
) )
52, 4eqeq12d 2449 . . 3  |-  ( x  =  A  ->  (
( rank `  U. x )  =  U. ( rank `  x )  <->  ( rank ` 
U. A )  = 
U. ( rank `  A
) ) )
6 vex 2951 . . . . . . 7  |-  x  e. 
_V
76rankuni2 7770 . . . . . 6  |-  ( rank `  U. x )  = 
U_ z  e.  x  ( rank `  z )
8 fvex 5733 . . . . . . 7  |-  ( rank `  z )  e.  _V
98dfiun2 4117 . . . . . 6  |-  U_ z  e.  x  ( rank `  z )  =  U. { y  |  E. z  e.  x  y  =  ( rank `  z
) }
107, 9eqtri 2455 . . . . 5  |-  ( rank `  U. x )  = 
U. { y  |  E. z  e.  x  y  =  ( rank `  z ) }
11 df-rex 2703 . . . . . . . 8  |-  ( E. z  e.  x  y  =  ( rank `  z
)  <->  E. z ( z  e.  x  /\  y  =  ( rank `  z
) ) )
126rankel 7754 . . . . . . . . . . 11  |-  ( z  e.  x  ->  ( rank `  z )  e.  ( rank `  x
) )
1312anim1i 552 . . . . . . . . . 10  |-  ( ( z  e.  x  /\  y  =  ( rank `  z ) )  -> 
( ( rank `  z
)  e.  ( rank `  x )  /\  y  =  ( rank `  z
) ) )
1413eximi 1585 . . . . . . . . 9  |-  ( E. z ( z  e.  x  /\  y  =  ( rank `  z
) )  ->  E. z
( ( rank `  z
)  e.  ( rank `  x )  /\  y  =  ( rank `  z
) ) )
15 19.42v 1928 . . . . . . . . . 10  |-  ( E. z ( y  e.  ( rank `  x
)  /\  y  =  ( rank `  z )
)  <->  ( y  e.  ( rank `  x
)  /\  E. z 
y  =  ( rank `  z ) ) )
16 eleq1 2495 . . . . . . . . . . . 12  |-  ( y  =  ( rank `  z
)  ->  ( y  e.  ( rank `  x
)  <->  ( rank `  z
)  e.  ( rank `  x ) ) )
1716pm5.32ri 620 . . . . . . . . . . 11  |-  ( ( y  e.  ( rank `  x )  /\  y  =  ( rank `  z
) )  <->  ( ( rank `  z )  e.  ( rank `  x
)  /\  y  =  ( rank `  z )
) )
1817exbii 1592 . . . . . . . . . 10  |-  ( E. z ( y  e.  ( rank `  x
)  /\  y  =  ( rank `  z )
)  <->  E. z ( (
rank `  z )  e.  ( rank `  x
)  /\  y  =  ( rank `  z )
) )
19 simpl 444 . . . . . . . . . . 11  |-  ( ( y  e.  ( rank `  x )  /\  E. z  y  =  ( rank `  z ) )  ->  y  e.  (
rank `  x )
)
20 rankon 7710 . . . . . . . . . . . . . . . . 17  |-  ( rank `  x )  e.  On
2120oneli 4680 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( rank `  x
)  ->  y  e.  On )
22 r1fnon 7682 . . . . . . . . . . . . . . . . 17  |-  R1  Fn  On
23 fndm 5535 . . . . . . . . . . . . . . . . 17  |-  ( R1  Fn  On  ->  dom  R1  =  On )
2422, 23ax-mp 8 . . . . . . . . . . . . . . . 16  |-  dom  R1  =  On
2521, 24syl6eleqr 2526 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( rank `  x
)  ->  y  e.  dom  R1 )
26 rankr1id 7777 . . . . . . . . . . . . . . 15  |-  ( y  e.  dom  R1  <->  ( rank `  ( R1 `  y
) )  =  y )
2725, 26sylib 189 . . . . . . . . . . . . . 14  |-  ( y  e.  ( rank `  x
)  ->  ( rank `  ( R1 `  y
) )  =  y )
2827eqcomd 2440 . . . . . . . . . . . . 13  |-  ( y  e.  ( rank `  x
)  ->  y  =  ( rank `  ( R1 `  y ) ) )
29 fvex 5733 . . . . . . . . . . . . . 14  |-  ( R1
`  y )  e. 
_V
30 fveq2 5719 . . . . . . . . . . . . . . 15  |-  ( z  =  ( R1 `  y )  ->  ( rank `  z )  =  ( rank `  ( R1 `  y ) ) )
3130eqeq2d 2446 . . . . . . . . . . . . . 14  |-  ( z  =  ( R1 `  y )  ->  (
y  =  ( rank `  z )  <->  y  =  ( rank `  ( R1 `  y ) ) ) )
3229, 31spcev 3035 . . . . . . . . . . . . 13  |-  ( y  =  ( rank `  ( R1 `  y ) )  ->  E. z  y  =  ( rank `  z
) )
3328, 32syl 16 . . . . . . . . . . . 12  |-  ( y  e.  ( rank `  x
)  ->  E. z 
y  =  ( rank `  z ) )
3433ancli 535 . . . . . . . . . . 11  |-  ( y  e.  ( rank `  x
)  ->  ( y  e.  ( rank `  x
)  /\  E. z 
y  =  ( rank `  z ) ) )
3519, 34impbii 181 . . . . . . . . . 10  |-  ( ( y  e.  ( rank `  x )  /\  E. z  y  =  ( rank `  z ) )  <-> 
y  e.  ( rank `  x ) )
3615, 18, 353bitr3i 267 . . . . . . . . 9  |-  ( E. z ( ( rank `  z )  e.  (
rank `  x )  /\  y  =  ( rank `  z ) )  <-> 
y  e.  ( rank `  x ) )
3714, 36sylib 189 . . . . . . . 8  |-  ( E. z ( z  e.  x  /\  y  =  ( rank `  z
) )  ->  y  e.  ( rank `  x
) )
3811, 37sylbi 188 . . . . . . 7  |-  ( E. z  e.  x  y  =  ( rank `  z
)  ->  y  e.  ( rank `  x )
)
3938abssi 3410 . . . . . 6  |-  { y  |  E. z  e.  x  y  =  (
rank `  z ) }  C_  ( rank `  x
)
4039unissi 4030 . . . . 5  |-  U. {
y  |  E. z  e.  x  y  =  ( rank `  z ) }  C_  U. ( rank `  x )
4110, 40eqsstri 3370 . . . 4  |-  ( rank `  U. x )  C_  U. ( rank `  x
)
42 pwuni 4387 . . . . . . . 8  |-  x  C_  ~P U. x
436uniex 4696 . . . . . . . . . 10  |-  U. x  e.  _V
4443pwex 4374 . . . . . . . . 9  |-  ~P U. x  e.  _V
4544rankss 7764 . . . . . . . 8  |-  ( x 
C_  ~P U. x  -> 
( rank `  x )  C_  ( rank `  ~P U. x ) )
4642, 45ax-mp 8 . . . . . . 7  |-  ( rank `  x )  C_  ( rank `  ~P U. x
)
4743rankpw 7758 . . . . . . 7  |-  ( rank `  ~P U. x )  =  suc  ( rank `  U. x )
4846, 47sseqtri 3372 . . . . . 6  |-  ( rank `  x )  C_  suc  ( rank `  U. x )
4948unissi 4030 . . . . 5  |-  U. ( rank `  x )  C_  U.
suc  ( rank `  U. x )
50 rankon 7710 . . . . . 6  |-  ( rank `  U. x )  e.  On
5150onunisuci 4686 . . . . 5  |-  U. suc  ( rank `  U. x )  =  ( rank `  U. x )
5249, 51sseqtri 3372 . . . 4  |-  U. ( rank `  x )  C_  ( rank `  U. x )
5341, 52eqssi 3356 . . 3  |-  ( rank `  U. x )  = 
U. ( rank `  x
)
545, 53vtoclg 3003 . 2  |-  ( A  e.  _V  ->  ( rank `  U. A )  =  U. ( rank `  A ) )
55 uniexb 4743 . . . . 5  |-  ( A  e.  _V  <->  U. A  e. 
_V )
56 fvprc 5713 . . . . 5  |-  ( -. 
U. A  e.  _V  ->  ( rank `  U. A )  =  (/) )
5755, 56sylnbi 298 . . . 4  |-  ( -.  A  e.  _V  ->  (
rank `  U. A )  =  (/) )
58 uni0 4034 . . . 4  |-  U. (/)  =  (/)
5957, 58syl6eqr 2485 . . 3  |-  ( -.  A  e.  _V  ->  (
rank `  U. A )  =  U. (/) )
60 fvprc 5713 . . . 4  |-  ( -.  A  e.  _V  ->  (
rank `  A )  =  (/) )
6160unieqd 4018 . . 3  |-  ( -.  A  e.  _V  ->  U. ( rank `  A
)  =  U. (/) )
6259, 61eqtr4d 2470 . 2  |-  ( -.  A  e.  _V  ->  (
rank `  U. A )  =  U. ( rank `  A ) )
6354, 62pm2.61i 158 1  |-  ( rank `  U. A )  = 
U. ( rank `  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   {cab 2421   E.wrex 2698   _Vcvv 2948    C_ wss 3312   (/)c0 3620   ~Pcpw 3791   U.cuni 4007   U_ciun 4085   Oncon0 4573   suc csuc 4575   dom cdm 4869    Fn wfn 5440   ` cfv 5445   R1cr1 7677   rankcrnk 7678
This theorem is referenced by:  rankuniss  7781  rankbnd2  7784  rankxplim2  7793  rankxplim3  7794  rankxpsuc  7795  r1limwun  8600  hfuni  26073
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-reg 7549  ax-inf2 7585
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-recs 6624  df-rdg 6659  df-r1 7679  df-rank 7680
  Copyright terms: Public domain W3C validator