MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankuni Unicode version

Theorem rankuni 7551
Description: The rank of a union. Part of Exercise 4 of [Kunen] p. 107. (Contributed by NM, 15-Sep-2006.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankuni  |-  ( rank `  U. A )  = 
U. ( rank `  A
)

Proof of Theorem rankuni
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 3852 . . . . 5  |-  ( x  =  A  ->  U. x  =  U. A )
21fveq2d 5545 . . . 4  |-  ( x  =  A  ->  ( rank `  U. x )  =  ( rank `  U. A ) )
3 fveq2 5541 . . . . 5  |-  ( x  =  A  ->  ( rank `  x )  =  ( rank `  A
) )
43unieqd 3854 . . . 4  |-  ( x  =  A  ->  U. ( rank `  x )  = 
U. ( rank `  A
) )
52, 4eqeq12d 2310 . . 3  |-  ( x  =  A  ->  (
( rank `  U. x )  =  U. ( rank `  x )  <->  ( rank ` 
U. A )  = 
U. ( rank `  A
) ) )
6 vex 2804 . . . . . . 7  |-  x  e. 
_V
76rankuni2 7543 . . . . . 6  |-  ( rank `  U. x )  = 
U_ z  e.  x  ( rank `  z )
8 fvex 5555 . . . . . . 7  |-  ( rank `  z )  e.  _V
98dfiun2 3953 . . . . . 6  |-  U_ z  e.  x  ( rank `  z )  =  U. { y  |  E. z  e.  x  y  =  ( rank `  z
) }
107, 9eqtri 2316 . . . . 5  |-  ( rank `  U. x )  = 
U. { y  |  E. z  e.  x  y  =  ( rank `  z ) }
11 df-rex 2562 . . . . . . . 8  |-  ( E. z  e.  x  y  =  ( rank `  z
)  <->  E. z ( z  e.  x  /\  y  =  ( rank `  z
) ) )
126rankel 7527 . . . . . . . . . . 11  |-  ( z  e.  x  ->  ( rank `  z )  e.  ( rank `  x
) )
1312anim1i 551 . . . . . . . . . 10  |-  ( ( z  e.  x  /\  y  =  ( rank `  z ) )  -> 
( ( rank `  z
)  e.  ( rank `  x )  /\  y  =  ( rank `  z
) ) )
1413eximi 1566 . . . . . . . . 9  |-  ( E. z ( z  e.  x  /\  y  =  ( rank `  z
) )  ->  E. z
( ( rank `  z
)  e.  ( rank `  x )  /\  y  =  ( rank `  z
) ) )
15 19.42v 1858 . . . . . . . . . 10  |-  ( E. z ( y  e.  ( rank `  x
)  /\  y  =  ( rank `  z )
)  <->  ( y  e.  ( rank `  x
)  /\  E. z 
y  =  ( rank `  z ) ) )
16 eleq1 2356 . . . . . . . . . . . 12  |-  ( y  =  ( rank `  z
)  ->  ( y  e.  ( rank `  x
)  <->  ( rank `  z
)  e.  ( rank `  x ) ) )
1716pm5.32ri 619 . . . . . . . . . . 11  |-  ( ( y  e.  ( rank `  x )  /\  y  =  ( rank `  z
) )  <->  ( ( rank `  z )  e.  ( rank `  x
)  /\  y  =  ( rank `  z )
) )
1817exbii 1572 . . . . . . . . . 10  |-  ( E. z ( y  e.  ( rank `  x
)  /\  y  =  ( rank `  z )
)  <->  E. z ( (
rank `  z )  e.  ( rank `  x
)  /\  y  =  ( rank `  z )
) )
19 simpl 443 . . . . . . . . . . 11  |-  ( ( y  e.  ( rank `  x )  /\  E. z  y  =  ( rank `  z ) )  ->  y  e.  (
rank `  x )
)
20 rankon 7483 . . . . . . . . . . . . . . . . 17  |-  ( rank `  x )  e.  On
2120oneli 4516 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( rank `  x
)  ->  y  e.  On )
22 r1fnon 7455 . . . . . . . . . . . . . . . . 17  |-  R1  Fn  On
23 fndm 5359 . . . . . . . . . . . . . . . . 17  |-  ( R1  Fn  On  ->  dom  R1  =  On )
2422, 23ax-mp 8 . . . . . . . . . . . . . . . 16  |-  dom  R1  =  On
2521, 24syl6eleqr 2387 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( rank `  x
)  ->  y  e.  dom  R1 )
26 rankr1id 7550 . . . . . . . . . . . . . . 15  |-  ( y  e.  dom  R1  <->  ( rank `  ( R1 `  y
) )  =  y )
2725, 26sylib 188 . . . . . . . . . . . . . 14  |-  ( y  e.  ( rank `  x
)  ->  ( rank `  ( R1 `  y
) )  =  y )
2827eqcomd 2301 . . . . . . . . . . . . 13  |-  ( y  e.  ( rank `  x
)  ->  y  =  ( rank `  ( R1 `  y ) ) )
29 fvex 5555 . . . . . . . . . . . . . 14  |-  ( R1
`  y )  e. 
_V
30 fveq2 5541 . . . . . . . . . . . . . . 15  |-  ( z  =  ( R1 `  y )  ->  ( rank `  z )  =  ( rank `  ( R1 `  y ) ) )
3130eqeq2d 2307 . . . . . . . . . . . . . 14  |-  ( z  =  ( R1 `  y )  ->  (
y  =  ( rank `  z )  <->  y  =  ( rank `  ( R1 `  y ) ) ) )
3229, 31spcev 2888 . . . . . . . . . . . . 13  |-  ( y  =  ( rank `  ( R1 `  y ) )  ->  E. z  y  =  ( rank `  z
) )
3328, 32syl 15 . . . . . . . . . . . 12  |-  ( y  e.  ( rank `  x
)  ->  E. z 
y  =  ( rank `  z ) )
3433ancli 534 . . . . . . . . . . 11  |-  ( y  e.  ( rank `  x
)  ->  ( y  e.  ( rank `  x
)  /\  E. z 
y  =  ( rank `  z ) ) )
3519, 34impbii 180 . . . . . . . . . 10  |-  ( ( y  e.  ( rank `  x )  /\  E. z  y  =  ( rank `  z ) )  <-> 
y  e.  ( rank `  x ) )
3615, 18, 353bitr3i 266 . . . . . . . . 9  |-  ( E. z ( ( rank `  z )  e.  (
rank `  x )  /\  y  =  ( rank `  z ) )  <-> 
y  e.  ( rank `  x ) )
3714, 36sylib 188 . . . . . . . 8  |-  ( E. z ( z  e.  x  /\  y  =  ( rank `  z
) )  ->  y  e.  ( rank `  x
) )
3811, 37sylbi 187 . . . . . . 7  |-  ( E. z  e.  x  y  =  ( rank `  z
)  ->  y  e.  ( rank `  x )
)
3938abssi 3261 . . . . . 6  |-  { y  |  E. z  e.  x  y  =  (
rank `  z ) }  C_  ( rank `  x
)
40 uniss 3864 . . . . . 6  |-  ( { y  |  E. z  e.  x  y  =  ( rank `  z ) }  C_  ( rank `  x
)  ->  U. { y  |  E. z  e.  x  y  =  (
rank `  z ) }  C_  U. ( rank `  x ) )
4139, 40ax-mp 8 . . . . 5  |-  U. {
y  |  E. z  e.  x  y  =  ( rank `  z ) }  C_  U. ( rank `  x )
4210, 41eqsstri 3221 . . . 4  |-  ( rank `  U. x )  C_  U. ( rank `  x
)
43 pwuni 4222 . . . . . . . 8  |-  x  C_  ~P U. x
446uniex 4532 . . . . . . . . . 10  |-  U. x  e.  _V
4544pwex 4209 . . . . . . . . 9  |-  ~P U. x  e.  _V
4645rankss 7537 . . . . . . . 8  |-  ( x 
C_  ~P U. x  -> 
( rank `  x )  C_  ( rank `  ~P U. x ) )
4743, 46ax-mp 8 . . . . . . 7  |-  ( rank `  x )  C_  ( rank `  ~P U. x
)
4844rankpw 7531 . . . . . . 7  |-  ( rank `  ~P U. x )  =  suc  ( rank `  U. x )
4947, 48sseqtri 3223 . . . . . 6  |-  ( rank `  x )  C_  suc  ( rank `  U. x )
50 uniss 3864 . . . . . 6  |-  ( (
rank `  x )  C_ 
suc  ( rank `  U. x )  ->  U. ( rank `  x )  C_  U.
suc  ( rank `  U. x ) )
5149, 50ax-mp 8 . . . . 5  |-  U. ( rank `  x )  C_  U.
suc  ( rank `  U. x )
52 rankon 7483 . . . . . 6  |-  ( rank `  U. x )  e.  On
5352onunisuci 4522 . . . . 5  |-  U. suc  ( rank `  U. x )  =  ( rank `  U. x )
5451, 53sseqtri 3223 . . . 4  |-  U. ( rank `  x )  C_  ( rank `  U. x )
5542, 54eqssi 3208 . . 3  |-  ( rank `  U. x )  = 
U. ( rank `  x
)
565, 55vtoclg 2856 . 2  |-  ( A  e.  _V  ->  ( rank `  U. A )  =  U. ( rank `  A ) )
57 uniexb 4579 . . . . 5  |-  ( A  e.  _V  <->  U. A  e. 
_V )
58 fvprc 5535 . . . . 5  |-  ( -. 
U. A  e.  _V  ->  ( rank `  U. A )  =  (/) )
5957, 58sylnbi 297 . . . 4  |-  ( -.  A  e.  _V  ->  (
rank `  U. A )  =  (/) )
60 uni0 3870 . . . 4  |-  U. (/)  =  (/)
6159, 60syl6eqr 2346 . . 3  |-  ( -.  A  e.  _V  ->  (
rank `  U. A )  =  U. (/) )
62 fvprc 5535 . . . 4  |-  ( -.  A  e.  _V  ->  (
rank `  A )  =  (/) )
6362unieqd 3854 . . 3  |-  ( -.  A  e.  _V  ->  U. ( rank `  A
)  =  U. (/) )
6461, 63eqtr4d 2331 . 2  |-  ( -.  A  e.  _V  ->  (
rank `  U. A )  =  U. ( rank `  A ) )
6556, 64pm2.61i 156 1  |-  ( rank `  U. A )  = 
U. ( rank `  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   {cab 2282   E.wrex 2557   _Vcvv 2801    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   U.cuni 3843   U_ciun 3921   Oncon0 4408   suc csuc 4410   dom cdm 4705    Fn wfn 5266   ` cfv 5271   R1cr1 7450   rankcrnk 7451
This theorem is referenced by:  rankuniss  7554  rankbnd2  7557  rankxplim2  7566  rankxplim3  7567  rankxpsuc  7568  r1limwun  8374  hfuni  24886
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-reg 7322  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404  df-rdg 6439  df-r1 7452  df-rank 7453
  Copyright terms: Public domain W3C validator