MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankuni2b Unicode version

Theorem rankuni2b 7763
Description: The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
rankuni2b  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  U. A )  =  U_ x  e.  A  ( rank `  x
) )
Distinct variable group:    x, A

Proof of Theorem rankuni2b
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniwf 7729 . . . 4  |-  ( A  e.  U. ( R1
" On )  <->  U. A  e. 
U. ( R1 " On ) )
2 rankval3b 7736 . . . 4  |-  ( U. A  e.  U. ( R1 " On )  -> 
( rank `  U. A )  =  |^| { z  e.  On  |  A. y  e.  U. A (
rank `  y )  e.  z } )
31, 2sylbi 188 . . 3  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  U. A )  =  |^| { z  e.  On  |  A. y  e.  U. A (
rank `  y )  e.  z } )
4 iuneq1 4093 . . . . . . 7  |-  ( y  =  A  ->  U_ x  e.  y  ( rank `  x )  =  U_ x  e.  A  ( rank `  x ) )
54eleq1d 2496 . . . . . 6  |-  ( y  =  A  ->  ( U_ x  e.  y 
( rank `  x )  e.  On  <->  U_ x  e.  A  ( rank `  x )  e.  On ) )
6 vex 2946 . . . . . . 7  |-  y  e. 
_V
7 rankon 7705 . . . . . . . 8  |-  ( rank `  x )  e.  On
87rgenw 2760 . . . . . . 7  |-  A. x  e.  y  ( rank `  x )  e.  On
9 iunon 6586 . . . . . . 7  |-  ( ( y  e.  _V  /\  A. x  e.  y  (
rank `  x )  e.  On )  ->  U_ x  e.  y  ( rank `  x )  e.  On )
106, 8, 9mp2an 654 . . . . . 6  |-  U_ x  e.  y  ( rank `  x )  e.  On
115, 10vtoclg 2998 . . . . 5  |-  ( A  e.  U. ( R1
" On )  ->  U_ x  e.  A  ( rank `  x )  e.  On )
12 eluni2 4006 . . . . . . 7  |-  ( y  e.  U. A  <->  E. x  e.  A  y  e.  x )
13 nfv 1629 . . . . . . . 8  |-  F/ x  A  e.  U. ( R1 " On )
14 nfiu1 4108 . . . . . . . . 9  |-  F/_ x U_ x  e.  A  ( rank `  x )
1514nfel2 2578 . . . . . . . 8  |-  F/ x
( rank `  y )  e.  U_ x  e.  A  ( rank `  x )
16 r1elssi 7715 . . . . . . . . . . 11  |-  ( A  e.  U. ( R1
" On )  ->  A  C_  U. ( R1
" On ) )
1716sseld 3334 . . . . . . . . . 10  |-  ( A  e.  U. ( R1
" On )  -> 
( x  e.  A  ->  x  e.  U. ( R1 " On ) ) )
18 rankelb 7734 . . . . . . . . . 10  |-  ( x  e.  U. ( R1
" On )  -> 
( y  e.  x  ->  ( rank `  y
)  e.  ( rank `  x ) ) )
1917, 18syl6 31 . . . . . . . . 9  |-  ( A  e.  U. ( R1
" On )  -> 
( x  e.  A  ->  ( y  e.  x  ->  ( rank `  y
)  e.  ( rank `  x ) ) ) )
20 ssiun2 4121 . . . . . . . . . . 11  |-  ( x  e.  A  ->  ( rank `  x )  C_  U_ x  e.  A  (
rank `  x )
)
2120sseld 3334 . . . . . . . . . 10  |-  ( x  e.  A  ->  (
( rank `  y )  e.  ( rank `  x
)  ->  ( rank `  y )  e.  U_ x  e.  A  ( rank `  x ) ) )
2221a1i 11 . . . . . . . . 9  |-  ( A  e.  U. ( R1
" On )  -> 
( x  e.  A  ->  ( ( rank `  y
)  e.  ( rank `  x )  ->  ( rank `  y )  e. 
U_ x  e.  A  ( rank `  x )
) ) )
2319, 22syldd 63 . . . . . . . 8  |-  ( A  e.  U. ( R1
" On )  -> 
( x  e.  A  ->  ( y  e.  x  ->  ( rank `  y
)  e.  U_ x  e.  A  ( rank `  x ) ) ) )
2413, 15, 23rexlimd 2814 . . . . . . 7  |-  ( A  e.  U. ( R1
" On )  -> 
( E. x  e.  A  y  e.  x  ->  ( rank `  y
)  e.  U_ x  e.  A  ( rank `  x ) ) )
2512, 24syl5bi 209 . . . . . 6  |-  ( A  e.  U. ( R1
" On )  -> 
( y  e.  U. A  ->  ( rank `  y
)  e.  U_ x  e.  A  ( rank `  x ) ) )
2625ralrimiv 2775 . . . . 5  |-  ( A  e.  U. ( R1
" On )  ->  A. y  e.  U. A
( rank `  y )  e.  U_ x  e.  A  ( rank `  x )
)
27 eleq2 2491 . . . . . . 7  |-  ( z  =  U_ x  e.  A  ( rank `  x
)  ->  ( ( rank `  y )  e.  z  <->  ( rank `  y
)  e.  U_ x  e.  A  ( rank `  x ) ) )
2827ralbidv 2712 . . . . . 6  |-  ( z  =  U_ x  e.  A  ( rank `  x
)  ->  ( A. y  e.  U. A (
rank `  y )  e.  z  <->  A. y  e.  U. A ( rank `  y
)  e.  U_ x  e.  A  ( rank `  x ) ) )
2928elrab 3079 . . . . 5  |-  ( U_ x  e.  A  ( rank `  x )  e. 
{ z  e.  On  |  A. y  e.  U. A ( rank `  y
)  e.  z }  <-> 
( U_ x  e.  A  ( rank `  x )  e.  On  /\  A. y  e.  U. A ( rank `  y )  e.  U_ x  e.  A  ( rank `  x ) ) )
3011, 26, 29sylanbrc 646 . . . 4  |-  ( A  e.  U. ( R1
" On )  ->  U_ x  e.  A  ( rank `  x )  e.  { z  e.  On  |  A. y  e.  U. A ( rank `  y
)  e.  z } )
31 intss1 4052 . . . 4  |-  ( U_ x  e.  A  ( rank `  x )  e. 
{ z  e.  On  |  A. y  e.  U. A ( rank `  y
)  e.  z }  ->  |^| { z  e.  On  |  A. y  e.  U. A ( rank `  y )  e.  z }  C_  U_ x  e.  A  ( rank `  x
) )
3230, 31syl 16 . . 3  |-  ( A  e.  U. ( R1
" On )  ->  |^| { z  e.  On  |  A. y  e.  U. A ( rank `  y
)  e.  z } 
C_  U_ x  e.  A  ( rank `  x )
)
333, 32eqsstrd 3369 . 2  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  U. A ) 
C_  U_ x  e.  A  ( rank `  x )
)
341biimpi 187 . . . . 5  |-  ( A  e.  U. ( R1
" On )  ->  U. A  e.  U. ( R1 " On ) )
35 elssuni 4030 . . . . 5  |-  ( x  e.  A  ->  x  C_ 
U. A )
36 rankssb 7758 . . . . 5  |-  ( U. A  e.  U. ( R1 " On )  -> 
( x  C_  U. A  ->  ( rank `  x
)  C_  ( rank ` 
U. A ) ) )
3734, 35, 36syl2im 36 . . . 4  |-  ( A  e.  U. ( R1
" On )  -> 
( x  e.  A  ->  ( rank `  x
)  C_  ( rank ` 
U. A ) ) )
3837ralrimiv 2775 . . 3  |-  ( A  e.  U. ( R1
" On )  ->  A. x  e.  A  ( rank `  x )  C_  ( rank `  U. A ) )
39 iunss 4119 . . 3  |-  ( U_ x  e.  A  ( rank `  x )  C_  ( rank `  U. A )  <->  A. x  e.  A  ( rank `  x )  C_  ( rank `  U. A ) )
4038, 39sylibr 204 . 2  |-  ( A  e.  U. ( R1
" On )  ->  U_ x  e.  A  ( rank `  x )  C_  ( rank `  U. A ) )
4133, 40eqssd 3352 1  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  U. A )  =  U_ x  e.  A  ( rank `  x
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725   A.wral 2692   E.wrex 2693   {crab 2696   _Vcvv 2943    C_ wss 3307   U.cuni 4002   |^|cint 4037   U_ciun 4080   Oncon0 4568   "cima 4867   ` cfv 5440   R1cr1 7672   rankcrnk 7673
This theorem is referenced by:  rankuni2  7765  rankcf  8636
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-rep 4307  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-ral 2697  df-rex 2698  df-reu 2699  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-pss 3323  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-tp 3809  df-op 3810  df-uni 4003  df-int 4038  df-iun 4082  df-br 4200  df-opab 4254  df-mpt 4255  df-tr 4290  df-eprel 4481  df-id 4485  df-po 4490  df-so 4491  df-fr 4528  df-we 4530  df-ord 4571  df-on 4572  df-lim 4573  df-suc 4574  df-om 4832  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-recs 6619  df-rdg 6654  df-r1 7674  df-rank 7675
  Copyright terms: Public domain W3C validator