MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankval2 Unicode version

Theorem rankval2 7485
Description: Value of an alternate definition of the rank function. Definition of [BellMachover] p. 478. (Contributed by NM, 8-Oct-2003.)
Assertion
Ref Expression
rankval2  |-  ( A  e.  B  ->  ( rank `  A )  = 
|^| { x  e.  On  |  A  C_  ( R1
`  x ) } )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem rankval2
StepHypRef Expression
1 rankvalg 7484 . 2  |-  ( A  e.  B  ->  ( rank `  A )  = 
|^| { x  e.  On  |  A  e.  ( R1 `  suc  x ) } )
2 r1suc 7437 . . . . . 6  |-  ( x  e.  On  ->  ( R1 `  suc  x )  =  ~P ( R1
`  x ) )
32eleq2d 2351 . . . . 5  |-  ( x  e.  On  ->  ( A  e.  ( R1 ` 
suc  x )  <->  A  e.  ~P ( R1 `  x
) ) )
4 fvex 5499 . . . . . 6  |-  ( R1
`  x )  e. 
_V
54elpw2 4169 . . . . 5  |-  ( A  e.  ~P ( R1
`  x )  <->  A  C_  ( R1 `  x ) )
63, 5syl6bb 254 . . . 4  |-  ( x  e.  On  ->  ( A  e.  ( R1 ` 
suc  x )  <->  A  C_  ( R1 `  x ) ) )
76rabbiia 2779 . . 3  |-  { x  e.  On  |  A  e.  ( R1 `  suc  x ) }  =  { x  e.  On  |  A  C_  ( R1
`  x ) }
87inteqi 3867 . 2  |-  |^| { x  e.  On  |  A  e.  ( R1 `  suc  x ) }  =  |^| { x  e.  On  |  A  C_  ( R1
`  x ) }
91, 8syl6eq 2332 1  |-  ( A  e.  B  ->  ( rank `  A )  = 
|^| { x  e.  On  |  A  C_  ( R1
`  x ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1628    e. wcel 1688   {crab 2548    C_ wss 3153   ~Pcpw 3626   |^|cint 3863   Oncon0 4391   suc csuc 4393   ` cfv 5221   R1cr1 7429   rankcrnk 7430
This theorem is referenced by:  rankval4  7534
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-reg 7301  ax-inf2 7337
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-recs 6383  df-rdg 6418  df-r1 7431  df-rank 7432
  Copyright terms: Public domain W3C validator