MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankval3b Unicode version

Theorem rankval3b 7493
Description: The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankval3b  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  A )  =  |^| { x  e.  On  |  A. y  e.  A  ( rank `  y )  e.  x } )
Distinct variable group:    x, y, A

Proof of Theorem rankval3b
StepHypRef Expression
1 rankon 7462 . . . . . . . . . 10  |-  ( rank `  A )  e.  On
2 simprl 735 . . . . . . . . . 10  |-  ( ( A  e.  U. ( R1 " On )  /\  ( x  e.  On  /\ 
A. y  e.  A  ( rank `  y )  e.  x ) )  ->  x  e.  On )
3 ontri1 4425 . . . . . . . . . 10  |-  ( ( ( rank `  A
)  e.  On  /\  x  e.  On )  ->  ( ( rank `  A
)  C_  x  <->  -.  x  e.  ( rank `  A
) ) )
41, 2, 3sylancr 647 . . . . . . . . 9  |-  ( ( A  e.  U. ( R1 " On )  /\  ( x  e.  On  /\ 
A. y  e.  A  ( rank `  y )  e.  x ) )  -> 
( ( rank `  A
)  C_  x  <->  -.  x  e.  ( rank `  A
) ) )
54con2bid 321 . . . . . . . 8  |-  ( ( A  e.  U. ( R1 " On )  /\  ( x  e.  On  /\ 
A. y  e.  A  ( rank `  y )  e.  x ) )  -> 
( x  e.  (
rank `  A )  <->  -.  ( rank `  A
)  C_  x )
)
6 r1elssi 7472 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  U. ( R1
" On )  ->  A  C_  U. ( R1
" On ) )
76adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  U. ( R1 " On )  /\  x  e.  ( rank `  A ) )  ->  A  C_  U. ( R1
" On ) )
87sselda 3181 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  U. ( R1 " On )  /\  x  e.  (
rank `  A )
)  /\  y  e.  A )  ->  y  e.  U. ( R1 " On ) )
9 rankdmr1 7468 . . . . . . . . . . . . . . . . . 18  |-  ( rank `  A )  e.  dom  R1
10 r1funlim 7433 . . . . . . . . . . . . . . . . . . . 20  |-  ( Fun 
R1  /\  Lim  dom  R1 )
1110simpri 450 . . . . . . . . . . . . . . . . . . 19  |-  Lim  dom  R1
12 limord 4450 . . . . . . . . . . . . . . . . . . 19  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
13 ordtr1 4434 . . . . . . . . . . . . . . . . . . 19  |-  ( Ord 
dom  R1  ->  ( ( x  e.  ( rank `  A )  /\  ( rank `  A )  e. 
dom  R1 )  ->  x  e.  dom  R1 ) )
1411, 12, 13mp2b 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( rank `  A )  /\  ( rank `  A )  e. 
dom  R1 )  ->  x  e.  dom  R1 )
159, 14mpan2 655 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( rank `  A
)  ->  x  e.  dom  R1 )
1615ad2antlr 710 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  U. ( R1 " On )  /\  x  e.  (
rank `  A )
)  /\  y  e.  A )  ->  x  e.  dom  R1 )
17 rankr1ag 7469 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  U. ( R1 " On )  /\  x  e.  dom  R1 )  ->  ( y  e.  ( R1 `  x
)  <->  ( rank `  y
)  e.  x ) )
188, 16, 17syl2anc 645 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  U. ( R1 " On )  /\  x  e.  (
rank `  A )
)  /\  y  e.  A )  ->  (
y  e.  ( R1
`  x )  <->  ( rank `  y )  e.  x
) )
1918ralbidva 2560 . . . . . . . . . . . . . 14  |-  ( ( A  e.  U. ( R1 " On )  /\  x  e.  ( rank `  A ) )  -> 
( A. y  e.  A  y  e.  ( R1 `  x )  <->  A. y  e.  A  ( rank `  y )  e.  x ) )
2019biimpar 473 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  U. ( R1 " On )  /\  x  e.  (
rank `  A )
)  /\  A. y  e.  A  ( rank `  y )  e.  x
)  ->  A. y  e.  A  y  e.  ( R1 `  x ) )
2120an32s 782 . . . . . . . . . . . 12  |-  ( ( ( A  e.  U. ( R1 " On )  /\  A. y  e.  A  ( rank `  y
)  e.  x )  /\  x  e.  (
rank `  A )
)  ->  A. y  e.  A  y  e.  ( R1 `  x ) )
22 dfss3 3171 . . . . . . . . . . . 12  |-  ( A 
C_  ( R1 `  x )  <->  A. y  e.  A  y  e.  ( R1 `  x ) )
2321, 22sylibr 205 . . . . . . . . . . 11  |-  ( ( ( A  e.  U. ( R1 " On )  /\  A. y  e.  A  ( rank `  y
)  e.  x )  /\  x  e.  (
rank `  A )
)  ->  A  C_  ( R1 `  x ) )
24 simpll 733 . . . . . . . . . . . 12  |-  ( ( ( A  e.  U. ( R1 " On )  /\  A. y  e.  A  ( rank `  y
)  e.  x )  /\  x  e.  (
rank `  A )
)  ->  A  e.  U. ( R1 " On ) )
2515adantl 454 . . . . . . . . . . . 12  |-  ( ( ( A  e.  U. ( R1 " On )  /\  A. y  e.  A  ( rank `  y
)  e.  x )  /\  x  e.  (
rank `  A )
)  ->  x  e.  dom  R1 )
26 rankr1bg 7470 . . . . . . . . . . . 12  |-  ( ( A  e.  U. ( R1 " On )  /\  x  e.  dom  R1 )  ->  ( A  C_  ( R1 `  x )  <-> 
( rank `  A )  C_  x ) )
2724, 25, 26syl2anc 645 . . . . . . . . . . 11  |-  ( ( ( A  e.  U. ( R1 " On )  /\  A. y  e.  A  ( rank `  y
)  e.  x )  /\  x  e.  (
rank `  A )
)  ->  ( A  C_  ( R1 `  x
)  <->  ( rank `  A
)  C_  x )
)
2823, 27mpbid 203 . . . . . . . . . 10  |-  ( ( ( A  e.  U. ( R1 " On )  /\  A. y  e.  A  ( rank `  y
)  e.  x )  /\  x  e.  (
rank `  A )
)  ->  ( rank `  A )  C_  x
)
2928ex 425 . . . . . . . . 9  |-  ( ( A  e.  U. ( R1 " On )  /\  A. y  e.  A  (
rank `  y )  e.  x )  ->  (
x  e.  ( rank `  A )  ->  ( rank `  A )  C_  x ) )
3029adantrl 699 . . . . . . . 8  |-  ( ( A  e.  U. ( R1 " On )  /\  ( x  e.  On  /\ 
A. y  e.  A  ( rank `  y )  e.  x ) )  -> 
( x  e.  (
rank `  A )  ->  ( rank `  A
)  C_  x )
)
315, 30sylbird 228 . . . . . . 7  |-  ( ( A  e.  U. ( R1 " On )  /\  ( x  e.  On  /\ 
A. y  e.  A  ( rank `  y )  e.  x ) )  -> 
( -.  ( rank `  A )  C_  x  ->  ( rank `  A
)  C_  x )
)
3231pm2.18d 105 . . . . . 6  |-  ( ( A  e.  U. ( R1 " On )  /\  ( x  e.  On  /\ 
A. y  e.  A  ( rank `  y )  e.  x ) )  -> 
( rank `  A )  C_  x )
3332ex 425 . . . . 5  |-  ( A  e.  U. ( R1
" On )  -> 
( ( x  e.  On  /\  A. y  e.  A  ( rank `  y )  e.  x
)  ->  ( rank `  A )  C_  x
) )
3433alrimiv 1622 . . . 4  |-  ( A  e.  U. ( R1
" On )  ->  A. x ( ( x  e.  On  /\  A. y  e.  A  ( rank `  y )  e.  x )  ->  ( rank `  A )  C_  x ) )
35 ssintab 3880 . . . 4  |-  ( (
rank `  A )  C_ 
|^| { x  |  ( x  e.  On  /\  A. y  e.  A  (
rank `  y )  e.  x ) }  <->  A. x
( ( x  e.  On  /\  A. y  e.  A  ( rank `  y )  e.  x
)  ->  ( rank `  A )  C_  x
) )
3634, 35sylibr 205 . . 3  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  A )  C_ 
|^| { x  |  ( x  e.  On  /\  A. y  e.  A  (
rank `  y )  e.  x ) } )
37 df-rab 2553 . . . 4  |-  { x  e.  On  |  A. y  e.  A  ( rank `  y )  e.  x }  =  { x  |  ( x  e.  On  /\  A. y  e.  A  ( rank `  y )  e.  x
) }
3837inteqi 3867 . . 3  |-  |^| { x  e.  On  |  A. y  e.  A  ( rank `  y )  e.  x }  =  |^| { x  |  ( x  e.  On  /\  A. y  e.  A  ( rank `  y )  e.  x
) }
3936, 38syl6sseqr 3226 . 2  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  A )  C_ 
|^| { x  e.  On  |  A. y  e.  A  ( rank `  y )  e.  x } )
40 rankelb 7491 . . . 4  |-  ( A  e.  U. ( R1
" On )  -> 
( y  e.  A  ->  ( rank `  y
)  e.  ( rank `  A ) ) )
4140ralrimiv 2626 . . 3  |-  ( A  e.  U. ( R1
" On )  ->  A. y  e.  A  ( rank `  y )  e.  ( rank `  A
) )
42 eleq2 2345 . . . . 5  |-  ( x  =  ( rank `  A
)  ->  ( ( rank `  y )  e.  x  <->  ( rank `  y
)  e.  ( rank `  A ) ) )
4342ralbidv 2564 . . . 4  |-  ( x  =  ( rank `  A
)  ->  ( A. y  e.  A  ( rank `  y )  e.  x  <->  A. y  e.  A  ( rank `  y )  e.  ( rank `  A
) ) )
4443onintss 4441 . . 3  |-  ( (
rank `  A )  e.  On  ->  ( A. y  e.  A  ( rank `  y )  e.  ( rank `  A
)  ->  |^| { x  e.  On  |  A. y  e.  A  ( rank `  y )  e.  x }  C_  ( rank `  A
) ) )
451, 41, 44mpsyl 61 . 2  |-  ( A  e.  U. ( R1
" On )  ->  |^| { x  e.  On  |  A. y  e.  A  ( rank `  y )  e.  x }  C_  ( rank `  A ) )
4639, 45eqssd 3197 1  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  A )  =  |^| { x  e.  On  |  A. y  e.  A  ( rank `  y )  e.  x } )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532    = wceq 1628    e. wcel 1688   {cab 2270   A.wral 2544   {crab 2548    C_ wss 3153   U.cuni 3828   |^|cint 3863   Ord word 4390   Oncon0 4391   Lim wlim 4392   dom cdm 4688   "cima 4691   Fun wfun 5215   ` cfv 5221   R1cr1 7429   rankcrnk 7430
This theorem is referenced by:  ranksnb  7494  rankonidlem  7495  rankval3  7507  rankunb  7517  rankuni2b  7520  tcrank  7549
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-recs 6383  df-rdg 6418  df-r1 7431  df-rank 7432
  Copyright terms: Public domain W3C validator