MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankvalb Unicode version

Theorem rankvalb 7402
Description: Value of the rank function. Definition 9.14 of [TakeutiZaring] p. 79 (proved as a theorem from our definition). This variant of rankval 7421 does not use Regularity, and so requires the assumption that  A is in the range of  R1. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 10-Sep-2013.)
Assertion
Ref Expression
rankvalb  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  A )  =  |^| { x  e.  On  |  A  e.  ( R1 `  suc  x ) } )
Distinct variable group:    x, A

Proof of Theorem rankvalb
StepHypRef Expression
1 elex 2748 . 2  |-  ( A  e.  U. ( R1
" On )  ->  A  e.  _V )
2 rankwflemb 7398 . . . 4  |-  ( A  e.  U. ( R1
" On )  <->  E. x  e.  On  A  e.  ( R1 `  suc  x
) )
3 intexrab 4112 . . . 4  |-  ( E. x  e.  On  A  e.  ( R1 `  suc  x )  <->  |^| { x  e.  On  |  A  e.  ( R1 `  suc  x ) }  e.  _V )
42, 3bitri 242 . . 3  |-  ( A  e.  U. ( R1
" On )  <->  |^| { x  e.  On  |  A  e.  ( R1 `  suc  x ) }  e.  _V )
54biimpi 188 . 2  |-  ( A  e.  U. ( R1
" On )  ->  |^| { x  e.  On  |  A  e.  ( R1 `  suc  x ) }  e.  _V )
6 eleq1 2316 . . . . 5  |-  ( y  =  A  ->  (
y  e.  ( R1
`  suc  x )  <->  A  e.  ( R1 `  suc  x ) ) )
76rabbidv 2732 . . . 4  |-  ( y  =  A  ->  { x  e.  On  |  y  e.  ( R1 `  suc  x ) }  =  { x  e.  On  |  A  e.  ( R1 `  suc  x ) } )
87inteqd 3808 . . 3  |-  ( y  =  A  ->  |^| { x  e.  On  |  y  e.  ( R1 `  suc  x ) }  =  |^| { x  e.  On  |  A  e.  ( R1 `  suc  x ) } )
9 df-rank 7370 . . 3  |-  rank  =  ( y  e.  _V  |->  |^|
{ x  e.  On  |  y  e.  ( R1 `  suc  x ) } )
108, 9fvmptg 5499 . 2  |-  ( ( A  e.  _V  /\  |^|
{ x  e.  On  |  A  e.  ( R1 `  suc  x ) }  e.  _V )  ->  ( rank `  A
)  =  |^| { x  e.  On  |  A  e.  ( R1 `  suc  x ) } )
111, 5, 10syl2anc 645 1  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  A )  =  |^| { x  e.  On  |  A  e.  ( R1 `  suc  x ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621   E.wrex 2517   {crab 2519   _Vcvv 2740   U.cuni 3768   |^|cint 3803   Oncon0 4329   suc csuc 4331   "cima 4629   ` cfv 4638   R1cr1 7367   rankcrnk 7368
This theorem is referenced by:  rankr1ai  7403  rankidb  7405  rankval  7421
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-recs 6321  df-rdg 6356  df-r1 7369  df-rank 7370
  Copyright terms: Public domain W3C validator