MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankvalb Unicode version

Theorem rankvalb 7465
Description: Value of the rank function. Definition 9.14 of [TakeutiZaring] p. 79 (proved as a theorem from our definition). This variant of rankval 7484 does not use Regularity, and so requires the assumption that  A is in the range of  R1. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 10-Sep-2013.)
Assertion
Ref Expression
rankvalb  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  A )  =  |^| { x  e.  On  |  A  e.  ( R1 `  suc  x ) } )
Distinct variable group:    x, A

Proof of Theorem rankvalb
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elex 2797 . 2  |-  ( A  e.  U. ( R1
" On )  ->  A  e.  _V )
2 rankwflemb 7461 . . . 4  |-  ( A  e.  U. ( R1
" On )  <->  E. x  e.  On  A  e.  ( R1 `  suc  x
) )
3 intexrab 4173 . . . 4  |-  ( E. x  e.  On  A  e.  ( R1 `  suc  x )  <->  |^| { x  e.  On  |  A  e.  ( R1 `  suc  x ) }  e.  _V )
42, 3bitri 240 . . 3  |-  ( A  e.  U. ( R1
" On )  <->  |^| { x  e.  On  |  A  e.  ( R1 `  suc  x ) }  e.  _V )
54biimpi 186 . 2  |-  ( A  e.  U. ( R1
" On )  ->  |^| { x  e.  On  |  A  e.  ( R1 `  suc  x ) }  e.  _V )
6 eleq1 2344 . . . . 5  |-  ( y  =  A  ->  (
y  e.  ( R1
`  suc  x )  <->  A  e.  ( R1 `  suc  x ) ) )
76rabbidv 2781 . . . 4  |-  ( y  =  A  ->  { x  e.  On  |  y  e.  ( R1 `  suc  x ) }  =  { x  e.  On  |  A  e.  ( R1 `  suc  x ) } )
87inteqd 3868 . . 3  |-  ( y  =  A  ->  |^| { x  e.  On  |  y  e.  ( R1 `  suc  x ) }  =  |^| { x  e.  On  |  A  e.  ( R1 `  suc  x ) } )
9 df-rank 7433 . . 3  |-  rank  =  ( y  e.  _V  |->  |^|
{ x  e.  On  |  y  e.  ( R1 `  suc  x ) } )
108, 9fvmptg 5562 . 2  |-  ( ( A  e.  _V  /\  |^|
{ x  e.  On  |  A  e.  ( R1 `  suc  x ) }  e.  _V )  ->  ( rank `  A
)  =  |^| { x  e.  On  |  A  e.  ( R1 `  suc  x ) } )
111, 5, 10syl2anc 642 1  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  A )  =  |^| { x  e.  On  |  A  e.  ( R1 `  suc  x ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1685   E.wrex 2545   {crab 2548   _Vcvv 2789   U.cuni 3828   |^|cint 3863   Oncon0 4391   suc csuc 4393   "cima 4691   ` cfv 5221   R1cr1 7430   rankcrnk 7431
This theorem is referenced by:  rankr1ai  7466  rankidb  7468  rankval  7484
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-recs 6384  df-rdg 6419  df-r1 7432  df-rank 7433
  Copyright terms: Public domain W3C validator