MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankxpsuc Unicode version

Theorem rankxpsuc 7766
Description: The rank of a cross product when the rank of the union of its arguments is a successor ordinal. Part of Exercise 4 of [Kunen] p. 107. See rankxplim 7763 for the limit ordinal case. (Contributed by NM, 19-Sep-2006.)
Hypotheses
Ref Expression
rankxplim.1  |-  A  e. 
_V
rankxplim.2  |-  B  e. 
_V
Assertion
Ref Expression
rankxpsuc  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  -> 
( rank `  ( A  X.  B ) )  =  suc  suc  ( rank `  ( A  u.  B
) ) )

Proof of Theorem rankxpsuc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 rankuni 7749 . . . . . . . 8  |-  ( rank `  U. U. ( A  X.  B ) )  =  U. ( rank `  U. ( A  X.  B ) )
2 rankuni 7749 . . . . . . . . 9  |-  ( rank `  U. ( A  X.  B ) )  = 
U. ( rank `  ( A  X.  B ) )
32unieqi 3989 . . . . . . . 8  |-  U. ( rank `  U. ( A  X.  B ) )  =  U. U. ( rank `  ( A  X.  B ) )
41, 3eqtri 2428 . . . . . . 7  |-  ( rank `  U. U. ( A  X.  B ) )  =  U. U. ( rank `  ( A  X.  B ) )
5 unixp 5365 . . . . . . . 8  |-  ( ( A  X.  B )  =/=  (/)  ->  U. U. ( A  X.  B )  =  ( A  u.  B
) )
65fveq2d 5695 . . . . . . 7  |-  ( ( A  X.  B )  =/=  (/)  ->  ( rank ` 
U. U. ( A  X.  B ) )  =  ( rank `  ( A  u.  B )
) )
74, 6syl5reqr 2455 . . . . . 6  |-  ( ( A  X.  B )  =/=  (/)  ->  ( rank `  ( A  u.  B
) )  =  U. U. ( rank `  ( A  X.  B ) ) )
8 suc11reg 7534 . . . . . 6  |-  ( suc  ( rank `  ( A  u.  B )
)  =  suc  U. U. ( rank `  ( A  X.  B ) )  <-> 
( rank `  ( A  u.  B ) )  = 
U. U. ( rank `  ( A  X.  B ) ) )
97, 8sylibr 204 . . . . 5  |-  ( ( A  X.  B )  =/=  (/)  ->  suc  ( rank `  ( A  u.  B
) )  =  suc  U.
U. ( rank `  ( A  X.  B ) ) )
109adantl 453 . . . 4  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  ->  suc  ( rank `  ( A  u.  B )
)  =  suc  U. U. ( rank `  ( A  X.  B ) ) )
11 fvex 5705 . . . . . . . . . . . . . 14  |-  ( rank `  ( A  u.  B
) )  e.  _V
12 eleq1 2468 . . . . . . . . . . . . . 14  |-  ( (
rank `  ( A  u.  B ) )  =  suc  C  ->  (
( rank `  ( A  u.  B ) )  e. 
_V 
<->  suc  C  e.  _V ) )
1311, 12mpbii 203 . . . . . . . . . . . . 13  |-  ( (
rank `  ( A  u.  B ) )  =  suc  C  ->  suc  C  e.  _V )
14 sucexb 4752 . . . . . . . . . . . . 13  |-  ( C  e.  _V  <->  suc  C  e. 
_V )
1513, 14sylibr 204 . . . . . . . . . . . 12  |-  ( (
rank `  ( A  u.  B ) )  =  suc  C  ->  C  e.  _V )
16 nlimsucg 4785 . . . . . . . . . . . 12  |-  ( C  e.  _V  ->  -.  Lim  suc  C )
1715, 16syl 16 . . . . . . . . . . 11  |-  ( (
rank `  ( A  u.  B ) )  =  suc  C  ->  -.  Lim  suc  C )
18 limeq 4557 . . . . . . . . . . 11  |-  ( (
rank `  ( A  u.  B ) )  =  suc  C  ->  ( Lim  ( rank `  ( A  u.  B )
)  <->  Lim  suc  C )
)
1917, 18mtbird 293 . . . . . . . . . 10  |-  ( (
rank `  ( A  u.  B ) )  =  suc  C  ->  -.  Lim  ( rank `  ( A  u.  B )
) )
20 rankxplim.1 . . . . . . . . . . 11  |-  A  e. 
_V
21 rankxplim.2 . . . . . . . . . . 11  |-  B  e. 
_V
2220, 21rankxplim2 7764 . . . . . . . . . 10  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  Lim  ( rank `  ( A  u.  B
) ) )
2319, 22nsyl 115 . . . . . . . . 9  |-  ( (
rank `  ( A  u.  B ) )  =  suc  C  ->  -.  Lim  ( rank `  ( A  X.  B ) ) )
2420, 21xpex 4953 . . . . . . . . . . . . . 14  |-  ( A  X.  B )  e. 
_V
2524rankeq0 7747 . . . . . . . . . . . . 13  |-  ( ( A  X.  B )  =  (/)  <->  ( rank `  ( A  X.  B ) )  =  (/) )
2625necon3abii 2601 . . . . . . . . . . . 12  |-  ( ( A  X.  B )  =/=  (/)  <->  -.  ( rank `  ( A  X.  B
) )  =  (/) )
27 rankon 7681 . . . . . . . . . . . . . . . 16  |-  ( rank `  ( A  X.  B
) )  e.  On
2827onordi 4649 . . . . . . . . . . . . . . 15  |-  Ord  ( rank `  ( A  X.  B ) )
29 ordzsl 4788 . . . . . . . . . . . . . . 15  |-  ( Ord  ( rank `  ( A  X.  B ) )  <-> 
( ( rank `  ( A  X.  B ) )  =  (/)  \/  E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  \/ 
Lim  ( rank `  ( A  X.  B ) ) ) )
3028, 29mpbi 200 . . . . . . . . . . . . . 14  |-  ( (
rank `  ( A  X.  B ) )  =  (/)  \/  E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  \/ 
Lim  ( rank `  ( A  X.  B ) ) )
31 3orass 939 . . . . . . . . . . . . . 14  |-  ( ( ( rank `  ( A  X.  B ) )  =  (/)  \/  E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  \/ 
Lim  ( rank `  ( A  X.  B ) ) )  <->  ( ( rank `  ( A  X.  B
) )  =  (/)  \/  ( E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  \/ 
Lim  ( rank `  ( A  X.  B ) ) ) ) )
3230, 31mpbi 200 . . . . . . . . . . . . 13  |-  ( (
rank `  ( A  X.  B ) )  =  (/)  \/  ( E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  \/ 
Lim  ( rank `  ( A  X.  B ) ) ) )
3332ori 365 . . . . . . . . . . . 12  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  ( E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  \/  Lim  ( rank `  ( A  X.  B ) ) ) )
3426, 33sylbi 188 . . . . . . . . . . 11  |-  ( ( A  X.  B )  =/=  (/)  ->  ( E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  \/  Lim  ( rank `  ( A  X.  B ) ) ) )
3534ord 367 . . . . . . . . . 10  |-  ( ( A  X.  B )  =/=  (/)  ->  ( -.  E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  ->  Lim  ( rank `  ( A  X.  B ) ) ) )
3635con1d 118 . . . . . . . . 9  |-  ( ( A  X.  B )  =/=  (/)  ->  ( -.  Lim  ( rank `  ( A  X.  B ) )  ->  E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x ) )
3723, 36syl5com 28 . . . . . . . 8  |-  ( (
rank `  ( A  u.  B ) )  =  suc  C  ->  (
( A  X.  B
)  =/=  (/)  ->  E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x ) )
38 vex 2923 . . . . . . . . . . . 12  |-  x  e. 
_V
39 nlimsucg 4785 . . . . . . . . . . . 12  |-  ( x  e.  _V  ->  -.  Lim  suc  x )
4038, 39ax-mp 8 . . . . . . . . . . 11  |-  -.  Lim  suc  x
41 limeq 4557 . . . . . . . . . . 11  |-  ( (
rank `  ( A  X.  B ) )  =  suc  x  ->  ( Lim  ( rank `  ( A  X.  B ) )  <->  Lim  suc  x ) )
4240, 41mtbiri 295 . . . . . . . . . 10  |-  ( (
rank `  ( A  X.  B ) )  =  suc  x  ->  -.  Lim  ( rank `  ( A  X.  B ) ) )
4342rexlimivw 2790 . . . . . . . . 9  |-  ( E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  ->  -.  Lim  ( rank `  ( A  X.  B ) ) )
4420, 21rankxplim3 7765 . . . . . . . . 9  |-  ( Lim  ( rank `  ( A  X.  B ) )  <->  Lim  U. ( rank `  ( A  X.  B ) ) )
4543, 44sylnib 296 . . . . . . . 8  |-  ( E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  ->  -.  Lim  U. ( rank `  ( A  X.  B ) ) )
4637, 45syl6com 33 . . . . . . 7  |-  ( ( A  X.  B )  =/=  (/)  ->  ( ( rank `  ( A  u.  B ) )  =  suc  C  ->  -.  Lim  U. ( rank `  ( A  X.  B ) ) ) )
47 unixp0 5366 . . . . . . . . . . . 12  |-  ( ( A  X.  B )  =  (/)  <->  U. ( A  X.  B )  =  (/) )
4824uniex 4668 . . . . . . . . . . . . 13  |-  U. ( A  X.  B )  e. 
_V
4948rankeq0 7747 . . . . . . . . . . . 12  |-  ( U. ( A  X.  B
)  =  (/)  <->  ( rank ` 
U. ( A  X.  B ) )  =  (/) )
502eqeq1i 2415 . . . . . . . . . . . 12  |-  ( (
rank `  U. ( A  X.  B ) )  =  (/)  <->  U. ( rank `  ( A  X.  B ) )  =  (/) )
5147, 49, 503bitri 263 . . . . . . . . . . 11  |-  ( ( A  X.  B )  =  (/)  <->  U. ( rank `  ( A  X.  B ) )  =  (/) )
5251necon3abii 2601 . . . . . . . . . 10  |-  ( ( A  X.  B )  =/=  (/)  <->  -.  U. ( rank `  ( A  X.  B ) )  =  (/) )
53 onuni 4736 . . . . . . . . . . . . . . 15  |-  ( (
rank `  ( A  X.  B ) )  e.  On  ->  U. ( rank `  ( A  X.  B ) )  e.  On )
5427, 53ax-mp 8 . . . . . . . . . . . . . 14  |-  U. ( rank `  ( A  X.  B ) )  e.  On
5554onordi 4649 . . . . . . . . . . . . 13  |-  Ord  U. ( rank `  ( A  X.  B ) )
56 ordzsl 4788 . . . . . . . . . . . . 13  |-  ( Ord  U. ( rank `  ( A  X.  B ) )  <-> 
( U. ( rank `  ( A  X.  B
) )  =  (/)  \/ 
E. x  e.  On  U. ( rank `  ( A  X.  B ) )  =  suc  x  \/ 
Lim  U. ( rank `  ( A  X.  B ) ) ) )
5755, 56mpbi 200 . . . . . . . . . . . 12  |-  ( U. ( rank `  ( A  X.  B ) )  =  (/)  \/  E. x  e.  On  U. ( rank `  ( A  X.  B
) )  =  suc  x  \/  Lim  U. ( rank `  ( A  X.  B ) ) )
58 3orass 939 . . . . . . . . . . . 12  |-  ( ( U. ( rank `  ( A  X.  B ) )  =  (/)  \/  E. x  e.  On  U. ( rank `  ( A  X.  B
) )  =  suc  x  \/  Lim  U. ( rank `  ( A  X.  B ) ) )  <-> 
( U. ( rank `  ( A  X.  B
) )  =  (/)  \/  ( E. x  e.  On  U. ( rank `  ( A  X.  B
) )  =  suc  x  \/  Lim  U. ( rank `  ( A  X.  B ) ) ) ) )
5957, 58mpbi 200 . . . . . . . . . . 11  |-  ( U. ( rank `  ( A  X.  B ) )  =  (/)  \/  ( E. x  e.  On  U. ( rank `  ( A  X.  B
) )  =  suc  x  \/  Lim  U. ( rank `  ( A  X.  B ) ) ) )
6059ori 365 . . . . . . . . . 10  |-  ( -. 
U. ( rank `  ( A  X.  B ) )  =  (/)  ->  ( E. x  e.  On  U. ( rank `  ( A  X.  B ) )  =  suc  x  \/  Lim  U. ( rank `  ( A  X.  B ) ) ) )
6152, 60sylbi 188 . . . . . . . . 9  |-  ( ( A  X.  B )  =/=  (/)  ->  ( E. x  e.  On  U. ( rank `  ( A  X.  B ) )  =  suc  x  \/  Lim  U. ( rank `  ( A  X.  B ) ) ) )
6261ord 367 . . . . . . . 8  |-  ( ( A  X.  B )  =/=  (/)  ->  ( -.  E. x  e.  On  U. ( rank `  ( A  X.  B ) )  =  suc  x  ->  Lim  U. ( rank `  ( A  X.  B ) ) ) )
6362con1d 118 . . . . . . 7  |-  ( ( A  X.  B )  =/=  (/)  ->  ( -.  Lim  U. ( rank `  ( A  X.  B ) )  ->  E. x  e.  On  U. ( rank `  ( A  X.  B ) )  =  suc  x ) )
6446, 63syld 42 . . . . . 6  |-  ( ( A  X.  B )  =/=  (/)  ->  ( ( rank `  ( A  u.  B ) )  =  suc  C  ->  E. x  e.  On  U. ( rank `  ( A  X.  B
) )  =  suc  x ) )
6564impcom 420 . . . . 5  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  ->  E. x  e.  On  U. ( rank `  ( A  X.  B ) )  =  suc  x )
66 onsucuni2 4777 . . . . . . 7  |-  ( ( U. ( rank `  ( A  X.  B ) )  e.  On  /\  U. ( rank `  ( A  X.  B ) )  =  suc  x )  ->  suc  U. U. ( rank `  ( A  X.  B
) )  =  U. ( rank `  ( A  X.  B ) ) )
6754, 66mpan 652 . . . . . 6  |-  ( U. ( rank `  ( A  X.  B ) )  =  suc  x  ->  suc  U.
U. ( rank `  ( A  X.  B ) )  =  U. ( rank `  ( A  X.  B
) ) )
6867rexlimivw 2790 . . . . 5  |-  ( E. x  e.  On  U. ( rank `  ( A  X.  B ) )  =  suc  x  ->  suc  U.
U. ( rank `  ( A  X.  B ) )  =  U. ( rank `  ( A  X.  B
) ) )
6965, 68syl 16 . . . 4  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  ->  suc  U. U. ( rank `  ( A  X.  B
) )  =  U. ( rank `  ( A  X.  B ) ) )
7010, 69eqtrd 2440 . . 3  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  ->  suc  ( rank `  ( A  u.  B )
)  =  U. ( rank `  ( A  X.  B ) ) )
71 suc11reg 7534 . . 3  |-  ( suc 
suc  ( rank `  ( A  u.  B )
)  =  suc  U. ( rank `  ( A  X.  B ) )  <->  suc  ( rank `  ( A  u.  B
) )  =  U. ( rank `  ( A  X.  B ) ) )
7270, 71sylibr 204 . 2  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  ->  suc  suc  ( rank `  ( A  u.  B )
)  =  suc  U. ( rank `  ( A  X.  B ) ) )
7337imp 419 . . 3  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  ->  E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x )
74 onsucuni2 4777 . . . . 5  |-  ( ( ( rank `  ( A  X.  B ) )  e.  On  /\  ( rank `  ( A  X.  B ) )  =  suc  x )  ->  suc  U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  X.  B ) ) )
7527, 74mpan 652 . . . 4  |-  ( (
rank `  ( A  X.  B ) )  =  suc  x  ->  suc  U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  X.  B ) ) )
7675rexlimivw 2790 . . 3  |-  ( E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  ->  suc  U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  X.  B ) ) )
7773, 76syl 16 . 2  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  ->  suc  U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  X.  B ) ) )
7872, 77eqtr2d 2441 1  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  -> 
( rank `  ( A  X.  B ) )  =  suc  suc  ( rank `  ( A  u.  B
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 358    /\ wa 359    \/ w3o 935    = wceq 1649    e. wcel 1721    =/= wne 2571   E.wrex 2671   _Vcvv 2920    u. cun 3282   (/)c0 3592   U.cuni 3979   Ord word 4544   Oncon0 4545   Lim wlim 4546   suc csuc 4547    X. cxp 4839   ` cfv 5417   rankcrnk 7649
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-reg 7520  ax-inf2 7556
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-recs 6596  df-rdg 6631  df-r1 7650  df-rank 7651
  Copyright terms: Public domain W3C validator