MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgsucg Structured version   Unicode version

Theorem rdgsucg 6681
Description: The value of the recursive definition generator at a successor. (Contributed by NM, 16-Nov-2014.)
Assertion
Ref Expression
rdgsucg  |-  ( B  e.  dom  rec ( F ,  A )  ->  ( rec ( F ,  A ) `  suc  B )  =  ( F `  ( rec ( F ,  A
) `  B )
) )

Proof of Theorem rdgsucg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rdgdmlim 6675 . . 3  |-  Lim  dom  rec ( F ,  A
)
2 limsuc 4829 . . 3  |-  ( Lim 
dom  rec ( F ,  A )  ->  ( B  e.  dom  rec ( F ,  A )  <->  suc 
B  e.  dom  rec ( F ,  A ) ) )
31, 2ax-mp 8 . 2  |-  ( B  e.  dom  rec ( F ,  A )  <->  suc 
B  e.  dom  rec ( F ,  A ) )
4 eqid 2436 . . 3  |-  ( x  e.  _V  |->  if ( x  =  (/) ,  A ,  if ( Lim  dom  x ,  U. ran  x ,  ( F `  ( x `  U. dom  x ) ) ) ) )  =  ( x  e.  _V  |->  if ( x  =  (/) ,  A ,  if ( Lim  dom  x ,  U. ran  x ,  ( F `  ( x `
 U. dom  x
) ) ) ) )
5 rdgvalg 6677 . . 3  |-  ( y  e.  dom  rec ( F ,  A )  ->  ( rec ( F ,  A ) `  y )  =  ( ( x  e.  _V  |->  if ( x  =  (/) ,  A ,  if ( Lim  dom  x ,  U. ran  x ,  ( F `  ( x `
 U. dom  x
) ) ) ) ) `  ( rec ( F ,  A
)  |`  y ) ) )
6 rdgseg 6680 . . 3  |-  ( y  e.  dom  rec ( F ,  A )  ->  ( rec ( F ,  A )  |`  y )  e.  _V )
7 rdgfun 6674 . . . 4  |-  Fun  rec ( F ,  A )
8 funfn 5482 . . . 4  |-  ( Fun 
rec ( F ,  A )  <->  rec ( F ,  A )  Fn  dom  rec ( F ,  A ) )
97, 8mpbi 200 . . 3  |-  rec ( F ,  A )  Fn  dom  rec ( F ,  A )
10 limord 4640 . . . 4  |-  ( Lim 
dom  rec ( F ,  A )  ->  Ord  dom 
rec ( F ,  A ) )
111, 10ax-mp 8 . . 3  |-  Ord  dom  rec ( F ,  A
)
124, 5, 6, 9, 11tz7.44-2 6665 . 2  |-  ( suc 
B  e.  dom  rec ( F ,  A )  ->  ( rec ( F ,  A ) `  suc  B )  =  ( F `  ( rec ( F ,  A
) `  B )
) )
133, 12sylbi 188 1  |-  ( B  e.  dom  rec ( F ,  A )  ->  ( rec ( F ,  A ) `  suc  B )  =  ( F `  ( rec ( F ,  A
) `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1652    e. wcel 1725   _Vcvv 2956   (/)c0 3628   ifcif 3739   U.cuni 4015    e. cmpt 4266   Ord word 4580   Lim wlim 4582   suc csuc 4583   dom cdm 4878   ran crn 4879   Fun wfun 5448    Fn wfn 5449   ` cfv 5454   reccrdg 6667
This theorem is referenced by:  rdgsuc  6682  rdgsucmptnf  6687  frsuc  6694  r1sucg  7695
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-recs 6633  df-rdg 6668
  Copyright terms: Public domain W3C validator