MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rebtwnz Unicode version

Theorem rebtwnz 10407
Description: There is a unique greatest integer less than or equal to a real number. Exercise 4 of [Apostol] p. 28. (Contributed by NM, 15-Nov-2004.)
Assertion
Ref Expression
rebtwnz  |-  ( A  e.  RR  ->  E! x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) ) )
Distinct variable group:    x, A

Proof of Theorem rebtwnz
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 renegcl 9200 . . 3  |-  ( A  e.  RR  ->  -u A  e.  RR )
2 zbtwnre 10406 . . 3  |-  ( -u A  e.  RR  ->  E! y  e.  ZZ  ( -u A  <_  y  /\  y  <  ( -u A  +  1 ) ) )
31, 2syl 15 . 2  |-  ( A  e.  RR  ->  E! y  e.  ZZ  ( -u A  <_  y  /\  y  <  ( -u A  +  1 ) ) )
4 znegcl 10147 . . . 4  |-  ( x  e.  ZZ  ->  -u x  e.  ZZ )
5 znegcl 10147 . . . . 5  |-  ( y  e.  ZZ  ->  -u y  e.  ZZ )
6 zcn 10121 . . . . . 6  |-  ( y  e.  ZZ  ->  y  e.  CC )
7 zcn 10121 . . . . . 6  |-  ( x  e.  ZZ  ->  x  e.  CC )
8 negcon2 9190 . . . . . 6  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( y  =  -u x 
<->  x  =  -u y
) )
96, 7, 8syl2an 463 . . . . 5  |-  ( ( y  e.  ZZ  /\  x  e.  ZZ )  ->  ( y  =  -u x 
<->  x  =  -u y
) )
105, 9reuhyp 4644 . . . 4  |-  ( y  e.  ZZ  ->  E! x  e.  ZZ  y  =  -u x )
11 breq2 4108 . . . . 5  |-  ( y  =  -u x  ->  ( -u A  <_  y  <->  -u A  <_  -u x ) )
12 breq1 4107 . . . . 5  |-  ( y  =  -u x  ->  (
y  <  ( -u A  +  1 )  <->  -u x  < 
( -u A  +  1 ) ) )
1311, 12anbi12d 691 . . . 4  |-  ( y  =  -u x  ->  (
( -u A  <_  y  /\  y  <  ( -u A  +  1 ) )  <->  ( -u A  <_ 
-u x  /\  -u x  <  ( -u A  + 
1 ) ) ) )
144, 10, 13reuxfr 4642 . . 3  |-  ( E! y  e.  ZZ  ( -u A  <_  y  /\  y  <  ( -u A  +  1 ) )  <-> 
E! x  e.  ZZ  ( -u A  <_  -u x  /\  -u x  <  ( -u A  +  1 ) ) )
15 zre 10120 . . . . . 6  |-  ( x  e.  ZZ  ->  x  e.  RR )
16 leneg 9367 . . . . . . . 8  |-  ( ( x  e.  RR  /\  A  e.  RR )  ->  ( x  <_  A  <->  -u A  <_  -u x ) )
1716ancoms 439 . . . . . . 7  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( x  <_  A  <->  -u A  <_  -u x ) )
18 peano2rem 9203 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A  -  1 )  e.  RR )
19 ltneg 9364 . . . . . . . . 9  |-  ( ( ( A  -  1 )  e.  RR  /\  x  e.  RR )  ->  ( ( A  - 
1 )  <  x  <->  -u x  <  -u ( A  -  1 ) ) )
2018, 19sylan 457 . . . . . . . 8  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( ( A  - 
1 )  <  x  <->  -u x  <  -u ( A  -  1 ) ) )
21 1re 8927 . . . . . . . . 9  |-  1  e.  RR
22 ltsubadd 9334 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  e.  RR  /\  x  e.  RR )  ->  (
( A  -  1 )  <  x  <->  A  <  ( x  +  1 ) ) )
2321, 22mp3an2 1265 . . . . . . . 8  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( ( A  - 
1 )  <  x  <->  A  <  ( x  + 
1 ) ) )
24 recn 8917 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  A  e.  CC )
25 ax-1cn 8885 . . . . . . . . . . 11  |-  1  e.  CC
26 negsubdi 9193 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  1  e.  CC )  -> 
-u ( A  - 
1 )  =  (
-u A  +  1 ) )
2724, 25, 26sylancl 643 . . . . . . . . . 10  |-  ( A  e.  RR  ->  -u ( A  -  1 )  =  ( -u A  +  1 ) )
2827adantr 451 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  x  e.  RR )  -> 
-u ( A  - 
1 )  =  (
-u A  +  1 ) )
2928breq2d 4116 . . . . . . . 8  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( -u x  <  -u ( A  -  1 )  <->  -u x  <  ( -u A  +  1 ) ) )
3020, 23, 293bitr3d 274 . . . . . . 7  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( A  <  (
x  +  1 )  <->  -u x  <  ( -u A  +  1 ) ) )
3117, 30anbi12d 691 . . . . . 6  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( ( x  <_  A  /\  A  <  (
x  +  1 ) )  <->  ( -u A  <_ 
-u x  /\  -u x  <  ( -u A  + 
1 ) ) ) )
3215, 31sylan2 460 . . . . 5  |-  ( ( A  e.  RR  /\  x  e.  ZZ )  ->  ( ( x  <_  A  /\  A  <  (
x  +  1 ) )  <->  ( -u A  <_ 
-u x  /\  -u x  <  ( -u A  + 
1 ) ) ) )
3332bicomd 192 . . . 4  |-  ( ( A  e.  RR  /\  x  e.  ZZ )  ->  ( ( -u A  <_ 
-u x  /\  -u x  <  ( -u A  + 
1 ) )  <->  ( x  <_  A  /\  A  < 
( x  +  1 ) ) ) )
3433reubidva 2799 . . 3  |-  ( A  e.  RR  ->  ( E! x  e.  ZZ  ( -u A  <_  -u x  /\  -u x  <  ( -u A  +  1 ) )  <->  E! x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) )
3514, 34syl5bb 248 . 2  |-  ( A  e.  RR  ->  ( E! y  e.  ZZ  ( -u A  <_  y  /\  y  <  ( -u A  +  1 ) )  <->  E! x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) )
363, 35mpbid 201 1  |-  ( A  e.  RR  ->  E! x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1642    e. wcel 1710   E!wreu 2621   class class class wbr 4104  (class class class)co 5945   CCcc 8825   RRcr 8826   1c1 8828    + caddc 8830    < clt 8957    <_ cle 8958    - cmin 9127   -ucneg 9128   ZZcz 10116
This theorem is referenced by:  flcl  11019  fllelt  11021  flbi  11038  ltflcei  25485  lxflflp1  25487
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904  ax-pre-sup 8905
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-riota 6391  df-recs 6475  df-rdg 6510  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-sup 7284  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-nn 9837  df-n0 10058  df-z 10117  df-uz 10323
  Copyright terms: Public domain W3C validator