MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rebtwnz Structured version   Unicode version

Theorem rebtwnz 10563
Description: There is a unique greatest integer less than or equal to a real number. Exercise 4 of [Apostol] p. 28. (Contributed by NM, 15-Nov-2004.)
Assertion
Ref Expression
rebtwnz  |-  ( A  e.  RR  ->  E! x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) ) )
Distinct variable group:    x, A

Proof of Theorem rebtwnz
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 renegcl 9354 . . 3  |-  ( A  e.  RR  ->  -u A  e.  RR )
2 zbtwnre 10562 . . 3  |-  ( -u A  e.  RR  ->  E! y  e.  ZZ  ( -u A  <_  y  /\  y  <  ( -u A  +  1 ) ) )
31, 2syl 16 . 2  |-  ( A  e.  RR  ->  E! y  e.  ZZ  ( -u A  <_  y  /\  y  <  ( -u A  +  1 ) ) )
4 znegcl 10303 . . . 4  |-  ( x  e.  ZZ  ->  -u x  e.  ZZ )
5 znegcl 10303 . . . . 5  |-  ( y  e.  ZZ  ->  -u y  e.  ZZ )
6 zcn 10277 . . . . . 6  |-  ( y  e.  ZZ  ->  y  e.  CC )
7 zcn 10277 . . . . . 6  |-  ( x  e.  ZZ  ->  x  e.  CC )
8 negcon2 9344 . . . . . 6  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( y  =  -u x 
<->  x  =  -u y
) )
96, 7, 8syl2an 464 . . . . 5  |-  ( ( y  e.  ZZ  /\  x  e.  ZZ )  ->  ( y  =  -u x 
<->  x  =  -u y
) )
105, 9reuhyp 4743 . . . 4  |-  ( y  e.  ZZ  ->  E! x  e.  ZZ  y  =  -u x )
11 breq2 4208 . . . . 5  |-  ( y  =  -u x  ->  ( -u A  <_  y  <->  -u A  <_  -u x ) )
12 breq1 4207 . . . . 5  |-  ( y  =  -u x  ->  (
y  <  ( -u A  +  1 )  <->  -u x  < 
( -u A  +  1 ) ) )
1311, 12anbi12d 692 . . . 4  |-  ( y  =  -u x  ->  (
( -u A  <_  y  /\  y  <  ( -u A  +  1 ) )  <->  ( -u A  <_ 
-u x  /\  -u x  <  ( -u A  + 
1 ) ) ) )
144, 10, 13reuxfr 4741 . . 3  |-  ( E! y  e.  ZZ  ( -u A  <_  y  /\  y  <  ( -u A  +  1 ) )  <-> 
E! x  e.  ZZ  ( -u A  <_  -u x  /\  -u x  <  ( -u A  +  1 ) ) )
15 zre 10276 . . . . . 6  |-  ( x  e.  ZZ  ->  x  e.  RR )
16 leneg 9521 . . . . . . . 8  |-  ( ( x  e.  RR  /\  A  e.  RR )  ->  ( x  <_  A  <->  -u A  <_  -u x ) )
1716ancoms 440 . . . . . . 7  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( x  <_  A  <->  -u A  <_  -u x ) )
18 peano2rem 9357 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A  -  1 )  e.  RR )
19 ltneg 9518 . . . . . . . . 9  |-  ( ( ( A  -  1 )  e.  RR  /\  x  e.  RR )  ->  ( ( A  - 
1 )  <  x  <->  -u x  <  -u ( A  -  1 ) ) )
2018, 19sylan 458 . . . . . . . 8  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( ( A  - 
1 )  <  x  <->  -u x  <  -u ( A  -  1 ) ) )
21 1re 9080 . . . . . . . . 9  |-  1  e.  RR
22 ltsubadd 9488 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  e.  RR  /\  x  e.  RR )  ->  (
( A  -  1 )  <  x  <->  A  <  ( x  +  1 ) ) )
2321, 22mp3an2 1267 . . . . . . . 8  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( ( A  - 
1 )  <  x  <->  A  <  ( x  + 
1 ) ) )
24 recn 9070 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  A  e.  CC )
25 ax-1cn 9038 . . . . . . . . . . 11  |-  1  e.  CC
26 negsubdi 9347 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  1  e.  CC )  -> 
-u ( A  - 
1 )  =  (
-u A  +  1 ) )
2724, 25, 26sylancl 644 . . . . . . . . . 10  |-  ( A  e.  RR  ->  -u ( A  -  1 )  =  ( -u A  +  1 ) )
2827adantr 452 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  x  e.  RR )  -> 
-u ( A  - 
1 )  =  (
-u A  +  1 ) )
2928breq2d 4216 . . . . . . . 8  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( -u x  <  -u ( A  -  1 )  <->  -u x  <  ( -u A  +  1 ) ) )
3020, 23, 293bitr3d 275 . . . . . . 7  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( A  <  (
x  +  1 )  <->  -u x  <  ( -u A  +  1 ) ) )
3117, 30anbi12d 692 . . . . . 6  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( ( x  <_  A  /\  A  <  (
x  +  1 ) )  <->  ( -u A  <_ 
-u x  /\  -u x  <  ( -u A  + 
1 ) ) ) )
3215, 31sylan2 461 . . . . 5  |-  ( ( A  e.  RR  /\  x  e.  ZZ )  ->  ( ( x  <_  A  /\  A  <  (
x  +  1 ) )  <->  ( -u A  <_ 
-u x  /\  -u x  <  ( -u A  + 
1 ) ) ) )
3332bicomd 193 . . . 4  |-  ( ( A  e.  RR  /\  x  e.  ZZ )  ->  ( ( -u A  <_ 
-u x  /\  -u x  <  ( -u A  + 
1 ) )  <->  ( x  <_  A  /\  A  < 
( x  +  1 ) ) ) )
3433reubidva 2883 . . 3  |-  ( A  e.  RR  ->  ( E! x  e.  ZZ  ( -u A  <_  -u x  /\  -u x  <  ( -u A  +  1 ) )  <->  E! x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) )
3514, 34syl5bb 249 . 2  |-  ( A  e.  RR  ->  ( E! y  e.  ZZ  ( -u A  <_  y  /\  y  <  ( -u A  +  1 ) )  <->  E! x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) )
363, 35mpbid 202 1  |-  ( A  e.  RR  ->  E! x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   E!wreu 2699   class class class wbr 4204  (class class class)co 6073   CCcc 8978   RRcr 8979   1c1 8981    + caddc 8983    < clt 9110    <_ cle 9111    - cmin 9281   -ucneg 9282   ZZcz 10272
This theorem is referenced by:  flcl  11194  fllelt  11196  flbi  11213  ltflcei  26204  lxflflp1  26206
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057  ax-pre-sup 9058
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-nn 9991  df-n0 10212  df-z 10273  df-uz 10479
  Copyright terms: Public domain W3C validator