MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reccn2 Structured version   Unicode version

Theorem reccn2 12390
Description: The reciprocal function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) (Revised by Mario Carneiro, 22-Sep-2014.)
Hypothesis
Ref Expression
reccn2.t  |-  T  =  ( if ( 1  <_  ( ( abs `  A )  x.  B
) ,  1 ,  ( ( abs `  A
)  x.  B ) )  x.  ( ( abs `  A )  /  2 ) )
Assertion
Ref Expression
reccn2  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
Distinct variable groups:    y, z, A    y, B, z    y, T, z

Proof of Theorem reccn2
StepHypRef Expression
1 reccn2.t . . 3  |-  T  =  ( if ( 1  <_  ( ( abs `  A )  x.  B
) ,  1 ,  ( ( abs `  A
)  x.  B ) )  x.  ( ( abs `  A )  /  2 ) )
2 1rp 10616 . . . . 5  |-  1  e.  RR+
3 simpl 444 . . . . . . . 8  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  A  e.  ( CC  \  {
0 } ) )
4 eldifsn 3927 . . . . . . . 8  |-  ( A  e.  ( CC  \  { 0 } )  <-> 
( A  e.  CC  /\  A  =/=  0 ) )
53, 4sylib 189 . . . . . . 7  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  ( A  e.  CC  /\  A  =/=  0 ) )
6 absrpcl 12093 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  RR+ )
75, 6syl 16 . . . . . 6  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  ( abs `  A )  e.  RR+ )
8 rpmulcl 10633 . . . . . 6  |-  ( ( ( abs `  A
)  e.  RR+  /\  B  e.  RR+ )  ->  (
( abs `  A
)  x.  B )  e.  RR+ )
97, 8sylancom 649 . . . . 5  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  ( ( abs `  A )  x.  B )  e.  RR+ )
10 ifcl 3775 . . . . 5  |-  ( ( 1  e.  RR+  /\  (
( abs `  A
)  x.  B )  e.  RR+ )  ->  if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  e.  RR+ )
112, 9, 10sylancr 645 . . . 4  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  if ( 1  <_  ( ( abs `  A )  x.  B ) ,  1 ,  ( ( abs `  A )  x.  B
) )  e.  RR+ )
127rphalfcld 10660 . . . 4  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  ( ( abs `  A )  /  2 )  e.  RR+ )
1311, 12rpmulcld 10664 . . 3  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  ( if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  x.  ( ( abs `  A )  /  2 ) )  e.  RR+ )
141, 13syl5eqel 2520 . 2  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  T  e.  RR+ )
155adantr 452 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  e.  CC  /\  A  =/=  0 ) )
1615simpld 446 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  A  e.  CC )
17 simprl 733 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  z  e.  ( CC  \  {
0 } ) )
18 eldifsn 3927 . . . . . . . . . . 11  |-  ( z  e.  ( CC  \  { 0 } )  <-> 
( z  e.  CC  /\  z  =/=  0 ) )
1917, 18sylib 189 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  e.  CC  /\  z  =/=  0 ) )
2019simpld 446 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  z  e.  CC )
2116, 20mulcld 9108 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  x.  z )  e.  CC )
22 mulne0 9664 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( z  e.  CC  /\  z  =/=  0 ) )  -> 
( A  x.  z
)  =/=  0 )
2315, 19, 22syl2anc 643 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  x.  z )  =/=  0 )
2416, 20, 21, 23divsubdird 9829 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  -  z
)  /  ( A  x.  z ) )  =  ( ( A  /  ( A  x.  z ) )  -  ( z  /  ( A  x.  z )
) ) )
2516mulid1d 9105 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  x.  1 )  =  A )
2625oveq1d 6096 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  x.  1 )  /  ( A  x.  z ) )  =  ( A  / 
( A  x.  z
) ) )
27 ax-1cn 9048 . . . . . . . . . . . 12  |-  1  e.  CC
2827a1i 11 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  1  e.  CC )
29 divcan5 9716 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  ( z  e.  CC  /\  z  =/=  0 )  /\  ( A  e.  CC  /\  A  =/=  0 ) )  -> 
( ( A  x.  1 )  /  ( A  x.  z )
)  =  ( 1  /  z ) )
3028, 19, 15, 29syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  x.  1 )  /  ( A  x.  z ) )  =  ( 1  / 
z ) )
3126, 30eqtr3d 2470 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  /  ( A  x.  z ) )  =  ( 1  /  z
) )
3220mulid1d 9105 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  x.  1 )  =  z )
3320, 16mulcomd 9109 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  x.  A )  =  ( A  x.  z ) )
3432, 33oveq12d 6099 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( z  x.  1 )  /  ( z  x.  A ) )  =  ( z  / 
( A  x.  z
) ) )
35 divcan5 9716 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  ( A  e.  CC  /\  A  =/=  0 )  /\  ( z  e.  CC  /\  z  =/=  0 ) )  -> 
( ( z  x.  1 )  /  (
z  x.  A ) )  =  ( 1  /  A ) )
3628, 15, 19, 35syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( z  x.  1 )  /  ( z  x.  A ) )  =  ( 1  /  A ) )
3734, 36eqtr3d 2470 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  /  ( A  x.  z ) )  =  ( 1  /  A ) )
3831, 37oveq12d 6099 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  /  ( A  x.  z )
)  -  ( z  /  ( A  x.  z ) ) )  =  ( ( 1  /  z )  -  ( 1  /  A
) ) )
3924, 38eqtrd 2468 . . . . . . 7  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  -  z
)  /  ( A  x.  z ) )  =  ( ( 1  /  z )  -  ( 1  /  A
) ) )
4039fveq2d 5732 . . . . . 6  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( A  -  z )  / 
( A  x.  z
) ) )  =  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) ) )
4116, 20subcld 9411 . . . . . . 7  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  -  z )  e.  CC )
4241, 21, 23absdivd 12257 . . . . . 6  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( A  -  z )  / 
( A  x.  z
) ) )  =  ( ( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) ) )
4340, 42eqtr3d 2470 . . . . 5  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( 1  /  z )  -  ( 1  /  A
) ) )  =  ( ( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) ) )
4416, 20abssubd 12255 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  =  ( abs `  (
z  -  A ) ) )
4520, 16subcld 9411 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  -  A )  e.  CC )
4645abscld 12238 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( z  -  A ) )  e.  RR )
4744, 46eqeltrd 2510 . . . . . . 7  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  e.  RR )
4814adantr 452 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  e.  RR+ )
4948rpred 10648 . . . . . . 7  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  e.  RR )
5021abscld 12238 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  x.  z ) )  e.  RR )
51 rpre 10618 . . . . . . . . 9  |-  ( B  e.  RR+  ->  B  e.  RR )
5251ad2antlr 708 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  B  e.  RR )
5350, 52remulcld 9116 . . . . . . 7  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  x.  z )
)  x.  B )  e.  RR )
54 simprr 734 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( z  -  A ) )  < 
T )
5544, 54eqbrtrd 4232 . . . . . . 7  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  < 
T )
569adantr 452 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  x.  B )  e.  RR+ )
5756rpred 10648 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  x.  B )  e.  RR )
5812adantr 452 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  e.  RR+ )
5958rpred 10648 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  e.  RR )
6057, 59remulcld 9116 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  B )  x.  ( ( abs `  A )  /  2
) )  e.  RR )
61 1re 9090 . . . . . . . . . . 11  |-  1  e.  RR
62 min2 10777 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  ( ( abs `  A
)  x.  B )  e.  RR )  ->  if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  <_  ( ( abs `  A )  x.  B ) )
6361, 57, 62sylancr 645 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  <_  ( ( abs `  A )  x.  B ) )
6411adantr 452 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  e.  RR+ )
6564rpred 10648 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  e.  RR )
6665, 57, 58lemul1d 10687 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  <_  ( ( abs `  A )  x.  B )  <->  ( if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  x.  ( ( abs `  A )  /  2 ) )  <_  ( ( ( abs `  A )  x.  B )  x.  ( ( abs `  A
)  /  2 ) ) ) )
6763, 66mpbid 202 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  x.  ( ( abs `  A )  /  2 ) )  <_  ( ( ( abs `  A )  x.  B )  x.  ( ( abs `  A
)  /  2 ) ) )
681, 67syl5eqbr 4245 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <_  ( ( ( abs `  A )  x.  B
)  x.  ( ( abs `  A )  /  2 ) ) )
6920abscld 12238 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  z )  e.  RR )
7016abscld 12238 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  A )  e.  RR )
7170recnd 9114 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  A )  e.  CC )
72712halvesd 10213 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  /  2 )  +  ( ( abs `  A )  /  2
) )  =  ( abs `  A ) )
7370, 69resubcld 9465 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  -  ( abs `  z ) )  e.  RR )
7416, 20abs2difd 12259 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  -  ( abs `  z ) )  <_ 
( abs `  ( A  -  z )
) )
75 min1 10776 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  RR  /\  ( ( abs `  A
)  x.  B )  e.  RR )  ->  if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  <_  1 )
7661, 57, 75sylancr 645 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  <_  1 )
7761a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  1  e.  RR )
7865, 77, 58lemul1d 10687 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  <_  1  <->  ( if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  x.  ( ( abs `  A )  /  2 ) )  <_  ( 1  x.  ( ( abs `  A
)  /  2 ) ) ) )
7976, 78mpbid 202 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  x.  ( ( abs `  A )  /  2 ) )  <_  ( 1  x.  ( ( abs `  A
)  /  2 ) ) )
801, 79syl5eqbr 4245 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <_  ( 1  x.  (
( abs `  A
)  /  2 ) ) )
8159recnd 9114 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  e.  CC )
8281mulid2d 9106 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
1  x.  ( ( abs `  A )  /  2 ) )  =  ( ( abs `  A )  /  2
) )
8380, 82breqtrd 4236 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <_  ( ( abs `  A
)  /  2 ) )
8447, 49, 59, 55, 83ltletrd 9230 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  < 
( ( abs `  A
)  /  2 ) )
8573, 47, 59, 74, 84lelttrd 9228 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  -  ( abs `  z ) )  < 
( ( abs `  A
)  /  2 ) )
8670, 69, 59ltsubadd2d 9624 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  -  ( abs `  z ) )  < 
( ( abs `  A
)  /  2 )  <-> 
( abs `  A
)  <  ( ( abs `  z )  +  ( ( abs `  A
)  /  2 ) ) ) )
8785, 86mpbid 202 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  A )  < 
( ( abs `  z
)  +  ( ( abs `  A )  /  2 ) ) )
8872, 87eqbrtrd 4232 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  /  2 )  +  ( ( abs `  A )  /  2
) )  <  (
( abs `  z
)  +  ( ( abs `  A )  /  2 ) ) )
8959, 69, 59ltadd1d 9619 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  /  2 )  <  ( abs `  z
)  <->  ( ( ( abs `  A )  /  2 )  +  ( ( abs `  A
)  /  2 ) )  <  ( ( abs `  z )  +  ( ( abs `  A )  /  2
) ) ) )
9088, 89mpbird 224 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  <  ( abs `  z
) )
9159, 69, 56, 90ltmul2dd 10700 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  B )  x.  ( ( abs `  A )  /  2
) )  <  (
( ( abs `  A
)  x.  B )  x.  ( abs `  z
) ) )
9216, 20absmuld 12256 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  x.  z ) )  =  ( ( abs `  A
)  x.  ( abs `  z ) ) )
9392oveq1d 6096 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  x.  z )
)  x.  B )  =  ( ( ( abs `  A )  x.  ( abs `  z
) )  x.  B
) )
9469recnd 9114 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  z )  e.  CC )
9552recnd 9114 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  B  e.  CC )
9671, 94, 95mul32d 9276 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  ( abs `  z ) )  x.  B )  =  ( ( ( abs `  A
)  x.  B )  x.  ( abs `  z
) ) )
9793, 96eqtrd 2468 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  x.  z )
)  x.  B )  =  ( ( ( abs `  A )  x.  B )  x.  ( abs `  z
) ) )
9891, 97breqtrrd 4238 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  B )  x.  ( ( abs `  A )  /  2
) )  <  (
( abs `  ( A  x.  z )
)  x.  B ) )
9949, 60, 53, 68, 98lelttrd 9228 . . . . . . 7  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <  ( ( abs `  ( A  x.  z )
)  x.  B ) )
10047, 49, 53, 55, 99lttrd 9231 . . . . . 6  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  < 
( ( abs `  ( A  x.  z )
)  x.  B ) )
10121, 23absrpcld 12250 . . . . . . 7  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  x.  z ) )  e.  RR+ )
10247, 52, 101ltdivmuld 10695 . . . . . 6  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) )  < 
B  <->  ( abs `  ( A  -  z )
)  <  ( ( abs `  ( A  x.  z ) )  x.  B ) ) )
103100, 102mpbird 224 . . . . 5  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) )  < 
B )
10443, 103eqbrtrd 4232 . . . 4  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( 1  /  z )  -  ( 1  /  A
) ) )  < 
B )
105104expr 599 . . 3  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  z  e.  ( CC  \  {
0 } ) )  ->  ( ( abs `  ( z  -  A
) )  <  T  ->  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
106105ralrimiva 2789 . 2  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  T  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
107 breq2 4216 . . . . 5  |-  ( y  =  T  ->  (
( abs `  (
z  -  A ) )  <  y  <->  ( abs `  ( z  -  A
) )  <  T
) )
108107imbi1d 309 . . . 4  |-  ( y  =  T  ->  (
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B )  <-> 
( ( abs `  (
z  -  A ) )  <  T  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) ) )
109108ralbidv 2725 . . 3  |-  ( y  =  T  ->  ( A. z  e.  ( CC  \  { 0 } ) ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B )  <->  A. z  e.  ( CC  \  { 0 } ) ( ( abs `  ( z  -  A
) )  <  T  ->  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) ) )
110109rspcev 3052 . 2  |-  ( ( T  e.  RR+  /\  A. z  e.  ( CC  \  { 0 } ) ( ( abs `  (
z  -  A ) )  <  T  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )  ->  E. y  e.  RR+  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
11114, 106, 110syl2anc 643 1  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   E.wrex 2706    \ cdif 3317   ifcif 3739   {csn 3814   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995    < clt 9120    <_ cle 9121    - cmin 9291    / cdiv 9677   2c2 10049   RR+crp 10612   abscabs 12039
This theorem is referenced by:  rlimdiv  12439  divcn  18898  climrec  27705
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-seq 11324  df-exp 11383  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041
  Copyright terms: Public domain W3C validator