MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recex Unicode version

Theorem recex 9260
Description: Existence of reciprocal of nonzero complex number. (Contributed by Eric Schmidt, 22-May-2007.)
Assertion
Ref Expression
recex  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  E. x  e.  CC  ( A  x.  x
)  =  1 )
Distinct variable group:    x, A

Proof of Theorem recex
StepHypRef Expression
1 ax-cnre 8687 . . 3  |-  ( A  e.  CC  ->  E. a  e.  RR  E. b  e.  RR  A  =  ( a  +  ( _i  x.  b ) ) )
2 recextlem2 9259 . . . . . . . . 9  |-  ( ( a  e.  RR  /\  b  e.  RR  /\  (
a  +  ( _i  x.  b ) )  =/=  0 )  -> 
( ( a  x.  a )  +  ( b  x.  b ) )  =/=  0 )
323expia 1158 . . . . . . . 8  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( a  +  ( _i  x.  b
) )  =/=  0  ->  ( ( a  x.  a )  +  ( b  x.  b ) )  =/=  0 ) )
4 remulcl 8699 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  a  e.  RR )  ->  ( a  x.  a
)  e.  RR )
54anidms 629 . . . . . . . . . . . 12  |-  ( a  e.  RR  ->  (
a  x.  a )  e.  RR )
6 remulcl 8699 . . . . . . . . . . . . 13  |-  ( ( b  e.  RR  /\  b  e.  RR )  ->  ( b  x.  b
)  e.  RR )
76anidms 629 . . . . . . . . . . . 12  |-  ( b  e.  RR  ->  (
b  x.  b )  e.  RR )
8 readdcl 8697 . . . . . . . . . . . 12  |-  ( ( ( a  x.  a
)  e.  RR  /\  ( b  x.  b
)  e.  RR )  ->  ( ( a  x.  a )  +  ( b  x.  b
) )  e.  RR )
95, 7, 8syl2an 465 . . . . . . . . . . 11  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( a  x.  a )  +  ( b  x.  b ) )  e.  RR )
10 ax-rrecex 8686 . . . . . . . . . . 11  |-  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  e.  RR  /\  ( ( a  x.  a )  +  ( b  x.  b ) )  =/=  0 )  ->  E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b
) )  x.  y
)  =  1 )
119, 10sylan 459 . . . . . . . . . 10  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  ( ( a  x.  a )  +  ( b  x.  b
) )  =/=  0
)  ->  E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )
12 recn 8704 . . . . . . . . . . . 12  |-  ( a  e.  RR  ->  a  e.  CC )
13 recn 8704 . . . . . . . . . . . 12  |-  ( b  e.  RR  ->  b  e.  CC )
14 recn 8704 . . . . . . . . . . . . . 14  |-  ( y  e.  RR  ->  y  e.  CC )
15 ax-icn 8673 . . . . . . . . . . . . . . . . . . . 20  |-  _i  e.  CC
16 mulcl 8698 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( _i  e.  CC  /\  b  e.  CC )  ->  ( _i  x.  b
)  e.  CC )
1715, 16mpan 654 . . . . . . . . . . . . . . . . . . 19  |-  ( b  e.  CC  ->  (
_i  x.  b )  e.  CC )
18 subcl 8923 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a  e.  CC  /\  ( _i  x.  b
)  e.  CC )  ->  ( a  -  ( _i  x.  b
) )  e.  CC )
1917, 18sylan2 462 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( a  -  (
_i  x.  b )
)  e.  CC )
20 mulcl 8698 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a  -  (
_i  x.  b )
)  e.  CC  /\  y  e.  CC )  ->  ( ( a  -  ( _i  x.  b
) )  x.  y
)  e.  CC )
2119, 20sylan 459 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( a  -  ( _i  x.  b ) )  x.  y )  e.  CC )
2221adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  /\  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )  -> 
( ( a  -  ( _i  x.  b
) )  x.  y
)  e.  CC )
23 addcl 8696 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a  e.  CC  /\  ( _i  x.  b
)  e.  CC )  ->  ( a  +  ( _i  x.  b
) )  e.  CC )
2417, 23sylan2 462 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( a  +  ( _i  x.  b ) )  e.  CC )
2524adantr 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( a  +  ( _i  x.  b
) )  e.  CC )
2619adantr 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( a  -  ( _i  x.  b
) )  e.  CC )
27 simpr 449 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  y  e.  CC )
2825, 26, 27mulassd 8735 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( ( a  +  ( _i  x.  b ) )  x.  ( a  -  ( _i  x.  b
) ) )  x.  y )  =  ( ( a  +  ( _i  x.  b ) )  x.  ( ( a  -  ( _i  x.  b ) )  x.  y ) ) )
29 recextlem1 9258 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( a  +  ( _i  x.  b
) )  x.  (
a  -  ( _i  x.  b ) ) )  =  ( ( a  x.  a )  +  ( b  x.  b ) ) )
3029adantr 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( a  +  ( _i  x.  b ) )  x.  ( a  -  (
_i  x.  b )
) )  =  ( ( a  x.  a
)  +  ( b  x.  b ) ) )
3130oveq1d 5722 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( ( a  +  ( _i  x.  b ) )  x.  ( a  -  ( _i  x.  b
) ) )  x.  y )  =  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y ) )
3228, 31eqtr3d 2287 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( a  +  ( _i  x.  b ) )  x.  ( ( a  -  ( _i  x.  b
) )  x.  y
) )  =  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y ) )
33 id 21 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )
3432, 33sylan9eq 2305 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  /\  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )  -> 
( ( a  +  ( _i  x.  b
) )  x.  (
( a  -  (
_i  x.  b )
)  x.  y ) )  =  1 )
35 oveq2 5715 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( ( a  -  ( _i  x.  b ) )  x.  y )  ->  (
( a  +  ( _i  x.  b ) )  x.  x )  =  ( ( a  +  ( _i  x.  b ) )  x.  ( ( a  -  ( _i  x.  b
) )  x.  y
) ) )
3635eqeq1d 2261 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( ( a  -  ( _i  x.  b ) )  x.  y )  ->  (
( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1  <->  (
( a  +  ( _i  x.  b ) )  x.  ( ( a  -  ( _i  x.  b ) )  x.  y ) )  =  1 ) )
3736rcla4ev 2819 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( a  -  ( _i  x.  b
) )  x.  y
)  e.  CC  /\  ( ( a  +  ( _i  x.  b
) )  x.  (
( a  -  (
_i  x.  b )
)  x.  y ) )  =  1 )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 )
3822, 34, 37syl2anc 645 . . . . . . . . . . . . . . 15  |-  ( ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  /\  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 )
3938exp31 590 . . . . . . . . . . . . . 14  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( y  e.  CC  ->  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) ) )
4014, 39syl5 30 . . . . . . . . . . . . 13  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( y  e.  RR  ->  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) ) )
4140rexlimdv 2626 . . . . . . . . . . . 12  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
4212, 13, 41syl2an 465 . . . . . . . . . . 11  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
4342adantr 453 . . . . . . . . . 10  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  ( ( a  x.  a )  +  ( b  x.  b
) )  =/=  0
)  ->  ( E. y  e.  RR  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
4411, 43mpd 16 . . . . . . . . 9  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  ( ( a  x.  a )  +  ( b  x.  b
) )  =/=  0
)  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  x.  x )  =  1 )
4544ex 425 . . . . . . . 8  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( ( a  x.  a )  +  ( b  x.  b
) )  =/=  0  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
463, 45syld 42 . . . . . . 7  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( a  +  ( _i  x.  b
) )  =/=  0  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
4746adantr 453 . . . . . 6  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  A  =  ( a  +  ( _i  x.  b ) ) )  ->  ( (
a  +  ( _i  x.  b ) )  =/=  0  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
48 neeq1 2420 . . . . . . 7  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  ( A  =/=  0  <->  ( a  +  ( _i  x.  b ) )  =/=  0 ) )
4948adantl 454 . . . . . 6  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  A  =  ( a  +  ( _i  x.  b ) ) )  ->  ( A  =/=  0  <->  ( a  +  ( _i  x.  b
) )  =/=  0
) )
50 oveq1 5714 . . . . . . . . 9  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  ( A  x.  x )  =  ( ( a  +  ( _i  x.  b ) )  x.  x ) )
5150eqeq1d 2261 . . . . . . . 8  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  (
( A  x.  x
)  =  1  <->  (
( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
5251rexbidv 2526 . . . . . . 7  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  ( E. x  e.  CC  ( A  x.  x
)  =  1  <->  E. x  e.  CC  (
( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
5352adantl 454 . . . . . 6  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  A  =  ( a  +  ( _i  x.  b ) ) )  ->  ( E. x  e.  CC  ( A  x.  x )  =  1  <->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
5447, 49, 533imtr4d 261 . . . . 5  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  A  =  ( a  +  ( _i  x.  b ) ) )  ->  ( A  =/=  0  ->  E. x  e.  CC  ( A  x.  x )  =  1 ) )
5554ex 425 . . . 4  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( A  =  ( a  +  ( _i  x.  b ) )  ->  ( A  =/=  0  ->  E. x  e.  CC  ( A  x.  x )  =  1 ) ) )
5655rexlimivv 2632 . . 3  |-  ( E. a  e.  RR  E. b  e.  RR  A  =  ( a  +  ( _i  x.  b
) )  ->  ( A  =/=  0  ->  E. x  e.  CC  ( A  x.  x )  =  1 ) )
571, 56syl 17 . 2  |-  ( A  e.  CC  ->  ( A  =/=  0  ->  E. x  e.  CC  ( A  x.  x )  =  1 ) )
5857imp 420 1  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  E. x  e.  CC  ( A  x.  x
)  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412   E.wrex 2508  (class class class)co 5707   CCcc 8612   RRcr 8613   0cc0 8614   1c1 8615   _ici 8616    + caddc 8617    x. cmul 8619    - cmin 8909
This theorem is referenced by:  mulcand  9261  receu  9271
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4035  ax-nul 4043  ax-pow 4079  ax-pr 4105  ax-un 4400  ax-resscn 8671  ax-1cn 8672  ax-icn 8673  ax-addcl 8674  ax-addrcl 8675  ax-mulcl 8676  ax-mulrcl 8677  ax-mulcom 8678  ax-addass 8679  ax-mulass 8680  ax-distr 8681  ax-i2m1 8682  ax-1ne0 8683  ax-1rid 8684  ax-rnegex 8685  ax-rrecex 8686  ax-cnre 8687  ax-pre-lttri 8688  ax-pre-lttrn 8689  ax-pre-ltadd 8690  ax-pre-mulgt0 8691
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2511  df-rex 2512  df-reu 2513  df-rab 2514  df-v 2727  df-sbc 2920  df-csb 3007  df-dif 3078  df-un 3080  df-in 3082  df-ss 3086  df-nul 3360  df-if 3468  df-pw 3529  df-sn 3547  df-pr 3548  df-op 3550  df-uni 3725  df-br 3918  df-opab 3972  df-mpt 3973  df-id 4199  df-po 4204  df-so 4205  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-fun 4599  df-fn 4600  df-f 4601  df-f1 4602  df-fo 4603  df-f1o 4604  df-fv 4605  df-ov 5710  df-oprab 5711  df-mpt2 5712  df-iota 6140  df-riota 6187  df-er 6543  df-en 6747  df-dom 6748  df-sdom 6749  df-pnf 8746  df-mnf 8747  df-xr 8748  df-ltxr 8749  df-le 8750  df-sub 8911  df-neg 8912
  Copyright terms: Public domain W3C validator