MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recex Unicode version

Theorem recex 9395
Description: Existence of reciprocal of nonzero complex number. (Contributed by Eric Schmidt, 22-May-2007.)
Assertion
Ref Expression
recex  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  E. x  e.  CC  ( A  x.  x
)  =  1 )
Distinct variable group:    x, A
Dummy variables  y 
a  b are mutually distinct and distinct from all other variables.

Proof of Theorem recex
StepHypRef Expression
1 cnre 8829 . . 3  |-  ( A  e.  CC  ->  E. a  e.  RR  E. b  e.  RR  A  =  ( a  +  ( _i  x.  b ) ) )
2 recextlem2 9394 . . . . . . . . 9  |-  ( ( a  e.  RR  /\  b  e.  RR  /\  (
a  +  ( _i  x.  b ) )  =/=  0 )  -> 
( ( a  x.  a )  +  ( b  x.  b ) )  =/=  0 )
323expia 1155 . . . . . . . 8  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( a  +  ( _i  x.  b
) )  =/=  0  ->  ( ( a  x.  a )  +  ( b  x.  b ) )  =/=  0 ) )
4 remulcl 8817 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  a  e.  RR )  ->  ( a  x.  a
)  e.  RR )
54anidms 628 . . . . . . . . . . . 12  |-  ( a  e.  RR  ->  (
a  x.  a )  e.  RR )
6 remulcl 8817 . . . . . . . . . . . . 13  |-  ( ( b  e.  RR  /\  b  e.  RR )  ->  ( b  x.  b
)  e.  RR )
76anidms 628 . . . . . . . . . . . 12  |-  ( b  e.  RR  ->  (
b  x.  b )  e.  RR )
8 readdcl 8815 . . . . . . . . . . . 12  |-  ( ( ( a  x.  a
)  e.  RR  /\  ( b  x.  b
)  e.  RR )  ->  ( ( a  x.  a )  +  ( b  x.  b
) )  e.  RR )
95, 7, 8syl2an 465 . . . . . . . . . . 11  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( a  x.  a )  +  ( b  x.  b ) )  e.  RR )
10 ax-rrecex 8804 . . . . . . . . . . 11  |-  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  e.  RR  /\  ( ( a  x.  a )  +  ( b  x.  b ) )  =/=  0 )  ->  E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b
) )  x.  y
)  =  1 )
119, 10sylan 459 . . . . . . . . . 10  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  ( ( a  x.  a )  +  ( b  x.  b
) )  =/=  0
)  ->  E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )
12 recn 8822 . . . . . . . . . . . 12  |-  ( a  e.  RR  ->  a  e.  CC )
13 recn 8822 . . . . . . . . . . . 12  |-  ( b  e.  RR  ->  b  e.  CC )
14 recn 8822 . . . . . . . . . . . . . 14  |-  ( y  e.  RR  ->  y  e.  CC )
15 ax-icn 8791 . . . . . . . . . . . . . . . . . . . 20  |-  _i  e.  CC
16 mulcl 8816 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( _i  e.  CC  /\  b  e.  CC )  ->  ( _i  x.  b
)  e.  CC )
1715, 16mpan 653 . . . . . . . . . . . . . . . . . . 19  |-  ( b  e.  CC  ->  (
_i  x.  b )  e.  CC )
18 subcl 9046 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a  e.  CC  /\  ( _i  x.  b
)  e.  CC )  ->  ( a  -  ( _i  x.  b
) )  e.  CC )
1917, 18sylan2 462 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( a  -  (
_i  x.  b )
)  e.  CC )
20 mulcl 8816 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a  -  (
_i  x.  b )
)  e.  CC  /\  y  e.  CC )  ->  ( ( a  -  ( _i  x.  b
) )  x.  y
)  e.  CC )
2119, 20sylan 459 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( a  -  ( _i  x.  b ) )  x.  y )  e.  CC )
2221adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  /\  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )  -> 
( ( a  -  ( _i  x.  b
) )  x.  y
)  e.  CC )
23 addcl 8814 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a  e.  CC  /\  ( _i  x.  b
)  e.  CC )  ->  ( a  +  ( _i  x.  b
) )  e.  CC )
2417, 23sylan2 462 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( a  +  ( _i  x.  b ) )  e.  CC )
2524adantr 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( a  +  ( _i  x.  b
) )  e.  CC )
2619adantr 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( a  -  ( _i  x.  b
) )  e.  CC )
27 simpr 449 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  y  e.  CC )
2825, 26, 27mulassd 8853 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( ( a  +  ( _i  x.  b ) )  x.  ( a  -  ( _i  x.  b
) ) )  x.  y )  =  ( ( a  +  ( _i  x.  b ) )  x.  ( ( a  -  ( _i  x.  b ) )  x.  y ) ) )
29 recextlem1 9393 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( a  +  ( _i  x.  b
) )  x.  (
a  -  ( _i  x.  b ) ) )  =  ( ( a  x.  a )  +  ( b  x.  b ) ) )
3029adantr 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( a  +  ( _i  x.  b ) )  x.  ( a  -  (
_i  x.  b )
) )  =  ( ( a  x.  a
)  +  ( b  x.  b ) ) )
3130oveq1d 5834 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( ( a  +  ( _i  x.  b ) )  x.  ( a  -  ( _i  x.  b
) ) )  x.  y )  =  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y ) )
3228, 31eqtr3d 2318 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  ->  ( ( a  +  ( _i  x.  b ) )  x.  ( ( a  -  ( _i  x.  b
) )  x.  y
) )  =  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y ) )
33 id 21 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )
3432, 33sylan9eq 2336 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  /\  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )  -> 
( ( a  +  ( _i  x.  b
) )  x.  (
( a  -  (
_i  x.  b )
)  x.  y ) )  =  1 )
35 oveq2 5827 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( ( a  -  ( _i  x.  b ) )  x.  y )  ->  (
( a  +  ( _i  x.  b ) )  x.  x )  =  ( ( a  +  ( _i  x.  b ) )  x.  ( ( a  -  ( _i  x.  b
) )  x.  y
) ) )
3635eqeq1d 2292 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( ( a  -  ( _i  x.  b ) )  x.  y )  ->  (
( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1  <->  (
( a  +  ( _i  x.  b ) )  x.  ( ( a  -  ( _i  x.  b ) )  x.  y ) )  =  1 ) )
3736rspcev 2885 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( a  -  ( _i  x.  b
) )  x.  y
)  e.  CC  /\  ( ( a  +  ( _i  x.  b
) )  x.  (
( a  -  (
_i  x.  b )
)  x.  y ) )  =  1 )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 )
3822, 34, 37syl2anc 644 . . . . . . . . . . . . . . 15  |-  ( ( ( ( a  e.  CC  /\  b  e.  CC )  /\  y  e.  CC )  /\  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1 )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 )
3938exp31 589 . . . . . . . . . . . . . 14  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( y  e.  CC  ->  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) ) )
4014, 39syl5 30 . . . . . . . . . . . . 13  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( y  e.  RR  ->  ( ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) ) )
4140rexlimdv 2667 . . . . . . . . . . . 12  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
4212, 13, 41syl2an 465 . . . . . . . . . . 11  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( E. y  e.  RR  ( ( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
4342adantr 453 . . . . . . . . . 10  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  ( ( a  x.  a )  +  ( b  x.  b
) )  =/=  0
)  ->  ( E. y  e.  RR  (
( ( a  x.  a )  +  ( b  x.  b ) )  x.  y )  =  1  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
4411, 43mpd 16 . . . . . . . . 9  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  ( ( a  x.  a )  +  ( b  x.  b
) )  =/=  0
)  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  x.  x )  =  1 )
4544ex 425 . . . . . . . 8  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( ( a  x.  a )  +  ( b  x.  b
) )  =/=  0  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
463, 45syld 42 . . . . . . 7  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( ( a  +  ( _i  x.  b
) )  =/=  0  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  x.  x
)  =  1 ) )
4746adantr 453 . . . . . 6  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  A  =  ( a  +  ( _i  x.  b ) ) )  ->  ( (
a  +  ( _i  x.  b ) )  =/=  0  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
48 neeq1 2455 . . . . . . 7  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  ( A  =/=  0  <->  ( a  +  ( _i  x.  b ) )  =/=  0 ) )
4948adantl 454 . . . . . 6  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  A  =  ( a  +  ( _i  x.  b ) ) )  ->  ( A  =/=  0  <->  ( a  +  ( _i  x.  b
) )  =/=  0
) )
50 oveq1 5826 . . . . . . . . 9  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  ( A  x.  x )  =  ( ( a  +  ( _i  x.  b ) )  x.  x ) )
5150eqeq1d 2292 . . . . . . . 8  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  (
( A  x.  x
)  =  1  <->  (
( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
5251rexbidv 2565 . . . . . . 7  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  ( E. x  e.  CC  ( A  x.  x
)  =  1  <->  E. x  e.  CC  (
( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
5352adantl 454 . . . . . 6  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  A  =  ( a  +  ( _i  x.  b ) ) )  ->  ( E. x  e.  CC  ( A  x.  x )  =  1  <->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  x.  x )  =  1 ) )
5447, 49, 533imtr4d 261 . . . . 5  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  A  =  ( a  +  ( _i  x.  b ) ) )  ->  ( A  =/=  0  ->  E. x  e.  CC  ( A  x.  x )  =  1 ) )
5554ex 425 . . . 4  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( A  =  ( a  +  ( _i  x.  b ) )  ->  ( A  =/=  0  ->  E. x  e.  CC  ( A  x.  x )  =  1 ) ) )
5655rexlimivv 2673 . . 3  |-  ( E. a  e.  RR  E. b  e.  RR  A  =  ( a  +  ( _i  x.  b
) )  ->  ( A  =/=  0  ->  E. x  e.  CC  ( A  x.  x )  =  1 ) )
571, 56syl 17 . 2  |-  ( A  e.  CC  ->  ( A  =/=  0  ->  E. x  e.  CC  ( A  x.  x )  =  1 ) )
5857imp 420 1  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  E. x  e.  CC  ( A  x.  x
)  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1624    e. wcel 1685    =/= wne 2447   E.wrex 2545  (class class class)co 5819   CCcc 8730   RRcr 8731   0cc0 8732   1c1 8733   _ici 8734    + caddc 8735    x. cmul 8737    - cmin 9032
This theorem is referenced by:  mulcand  9396  receu  9408
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-po 4313  df-so 4314  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-iota 6252  df-riota 6299  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035
  Copyright terms: Public domain W3C validator