MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recexpr Unicode version

Theorem recexpr 8671
Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
recexpr  |-  ( A  e.  P.  ->  E. x  e.  P.  ( A  .P.  x )  =  1P )
Distinct variable group:    x, A
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.

Proof of Theorem recexpr
StepHypRef Expression
1 breq1 4028 . . . . . 6  |-  ( z  =  w  ->  (
z  <Q  y  <->  w  <Q  y ) )
21anbi1d 687 . . . . 5  |-  ( z  =  w  ->  (
( z  <Q  y  /\  -.  ( *Q `  y )  e.  A
)  <->  ( w  <Q  y  /\  -.  ( *Q
`  y )  e.  A ) ) )
32exbidv 1613 . . . 4  |-  ( z  =  w  ->  ( E. y ( z  <Q 
y  /\  -.  ( *Q `  y )  e.  A )  <->  E. y
( w  <Q  y  /\  -.  ( *Q `  y )  e.  A
) ) )
43cbvabv 2404 . . 3  |-  { z  |  E. y ( z  <Q  y  /\  -.  ( *Q `  y
)  e.  A ) }  =  { w  |  E. y ( w 
<Q  y  /\  -.  ( *Q `  y )  e.  A ) }
54reclem2pr 8668 . 2  |-  ( A  e.  P.  ->  { z  |  E. y ( z  <Q  y  /\  -.  ( *Q `  y
)  e.  A ) }  e.  P. )
64reclem4pr 8670 . 2  |-  ( A  e.  P.  ->  ( A  .P.  { z  |  E. y ( z 
<Q  y  /\  -.  ( *Q `  y )  e.  A ) } )  =  1P )
7 oveq2 5828 . . . 4  |-  ( x  =  { z  |  E. y ( z 
<Q  y  /\  -.  ( *Q `  y )  e.  A ) }  ->  ( A  .P.  x )  =  ( A  .P.  { z  |  E. y
( z  <Q  y  /\  -.  ( *Q `  y )  e.  A
) } ) )
87eqeq1d 2293 . . 3  |-  ( x  =  { z  |  E. y ( z 
<Q  y  /\  -.  ( *Q `  y )  e.  A ) }  ->  ( ( A  .P.  x
)  =  1P  <->  ( A  .P.  { z  |  E. y ( z  <Q 
y  /\  -.  ( *Q `  y )  e.  A ) } )  =  1P ) )
98rspcev 2886 . 2  |-  ( ( { z  |  E. y ( z  <Q 
y  /\  -.  ( *Q `  y )  e.  A ) }  e.  P.  /\  ( A  .P.  { z  |  E. y
( z  <Q  y  /\  -.  ( *Q `  y )  e.  A
) } )  =  1P )  ->  E. x  e.  P.  ( A  .P.  x )  =  1P )
105, 6, 9syl2anc 644 1  |-  ( A  e.  P.  ->  E. x  e.  P.  ( A  .P.  x )  =  1P )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360   E.wex 1529    = wceq 1624    e. wcel 1685   {cab 2271   E.wrex 2546   class class class wbr 4025   ` cfv 5222  (class class class)co 5820   *Qcrq 8475    <Q cltq 8476   P.cnp 8477   1Pc1p 8478    .P. cmp 8480
This theorem is referenced by:  recexsrlem  8721
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7338
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-omul 6480  df-er 6656  df-ni 8492  df-pli 8493  df-mi 8494  df-lti 8495  df-plpq 8528  df-mpq 8529  df-ltpq 8530  df-enq 8531  df-nq 8532  df-erq 8533  df-plq 8534  df-mq 8535  df-1nq 8536  df-rq 8537  df-ltnq 8538  df-np 8601  df-1p 8602  df-mp 8604
  Copyright terms: Public domain W3C validator