MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recexpr Unicode version

Theorem recexpr 8675
Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
recexpr  |-  ( A  e.  P.  ->  E. x  e.  P.  ( A  .P.  x )  =  1P )
Distinct variable group:    x, A

Proof of Theorem recexpr
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4026 . . . . . 6  |-  ( z  =  w  ->  (
z  <Q  y  <->  w  <Q  y ) )
21anbi1d 685 . . . . 5  |-  ( z  =  w  ->  (
( z  <Q  y  /\  -.  ( *Q `  y )  e.  A
)  <->  ( w  <Q  y  /\  -.  ( *Q
`  y )  e.  A ) ) )
32exbidv 1612 . . . 4  |-  ( z  =  w  ->  ( E. y ( z  <Q 
y  /\  -.  ( *Q `  y )  e.  A )  <->  E. y
( w  <Q  y  /\  -.  ( *Q `  y )  e.  A
) ) )
43cbvabv 2402 . . 3  |-  { z  |  E. y ( z  <Q  y  /\  -.  ( *Q `  y
)  e.  A ) }  =  { w  |  E. y ( w 
<Q  y  /\  -.  ( *Q `  y )  e.  A ) }
54reclem2pr 8672 . 2  |-  ( A  e.  P.  ->  { z  |  E. y ( z  <Q  y  /\  -.  ( *Q `  y
)  e.  A ) }  e.  P. )
64reclem4pr 8674 . 2  |-  ( A  e.  P.  ->  ( A  .P.  { z  |  E. y ( z 
<Q  y  /\  -.  ( *Q `  y )  e.  A ) } )  =  1P )
7 oveq2 5866 . . . 4  |-  ( x  =  { z  |  E. y ( z 
<Q  y  /\  -.  ( *Q `  y )  e.  A ) }  ->  ( A  .P.  x )  =  ( A  .P.  { z  |  E. y
( z  <Q  y  /\  -.  ( *Q `  y )  e.  A
) } ) )
87eqeq1d 2291 . . 3  |-  ( x  =  { z  |  E. y ( z 
<Q  y  /\  -.  ( *Q `  y )  e.  A ) }  ->  ( ( A  .P.  x
)  =  1P  <->  ( A  .P.  { z  |  E. y ( z  <Q 
y  /\  -.  ( *Q `  y )  e.  A ) } )  =  1P ) )
98rspcev 2884 . 2  |-  ( ( { z  |  E. y ( z  <Q 
y  /\  -.  ( *Q `  y )  e.  A ) }  e.  P.  /\  ( A  .P.  { z  |  E. y
( z  <Q  y  /\  -.  ( *Q `  y )  e.  A
) } )  =  1P )  ->  E. x  e.  P.  ( A  .P.  x )  =  1P )
105, 6, 9syl2anc 642 1  |-  ( A  e.  P.  ->  E. x  e.  P.  ( A  .P.  x )  =  1P )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269   E.wrex 2544   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   *Qcrq 8479    <Q cltq 8480   P.cnp 8481   1Pc1p 8482    .P. cmp 8484
This theorem is referenced by:  recexsrlem  8725
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-omul 6484  df-er 6660  df-ni 8496  df-pli 8497  df-mi 8498  df-lti 8499  df-plpq 8532  df-mpq 8533  df-ltpq 8534  df-enq 8535  df-nq 8536  df-erq 8537  df-plq 8538  df-mq 8539  df-1nq 8540  df-rq 8541  df-ltnq 8542  df-np 8605  df-1p 8606  df-mp 8608
  Copyright terms: Public domain W3C validator