MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recexsr Unicode version

Theorem recexsr 8724
Description: The reciprocal of a nonzero signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
recexsr  |-  ( ( A  e.  R.  /\  A  =/=  0R )  ->  E. x  e.  R.  ( A  .R  x
)  =  1R )
Distinct variable group:    x, A
Dummy variable  y is distinct from all other variables.

Proof of Theorem recexsr
StepHypRef Expression
1 sqgt0sr 8723 . 2  |-  ( ( A  e.  R.  /\  A  =/=  0R )  ->  0R  <R  ( A  .R  A ) )
2 recexsrlem 8720 . . . 4  |-  ( 0R 
<R  ( A  .R  A
)  ->  E. y  e.  R.  ( ( A  .R  A )  .R  y )  =  1R )
3 mulclsr 8701 . . . . . . 7  |-  ( ( A  e.  R.  /\  y  e.  R. )  ->  ( A  .R  y
)  e.  R. )
4 mulasssr 8707 . . . . . . . . 9  |-  ( ( A  .R  A )  .R  y )  =  ( A  .R  ( A  .R  y ) )
54eqeq1i 2291 . . . . . . . 8  |-  ( ( ( A  .R  A
)  .R  y )  =  1R  <->  ( A  .R  ( A  .R  y
) )  =  1R )
6 oveq2 5827 . . . . . . . . . 10  |-  ( x  =  ( A  .R  y )  ->  ( A  .R  x )  =  ( A  .R  ( A  .R  y ) ) )
76eqeq1d 2292 . . . . . . . . 9  |-  ( x  =  ( A  .R  y )  ->  (
( A  .R  x
)  =  1R  <->  ( A  .R  ( A  .R  y
) )  =  1R ) )
87rspcev 2885 . . . . . . . 8  |-  ( ( ( A  .R  y
)  e.  R.  /\  ( A  .R  ( A  .R  y ) )  =  1R )  ->  E. x  e.  R.  ( A  .R  x
)  =  1R )
95, 8sylan2b 463 . . . . . . 7  |-  ( ( ( A  .R  y
)  e.  R.  /\  ( ( A  .R  A )  .R  y
)  =  1R )  ->  E. x  e.  R.  ( A  .R  x
)  =  1R )
103, 9sylan 459 . . . . . 6  |-  ( ( ( A  e.  R.  /\  y  e.  R. )  /\  ( ( A  .R  A )  .R  y
)  =  1R )  ->  E. x  e.  R.  ( A  .R  x
)  =  1R )
1110exp31 589 . . . . 5  |-  ( A  e.  R.  ->  (
y  e.  R.  ->  ( ( ( A  .R  A )  .R  y
)  =  1R  ->  E. x  e.  R.  ( A  .R  x )  =  1R ) ) )
1211rexlimdv 2667 . . . 4  |-  ( A  e.  R.  ->  ( E. y  e.  R.  ( ( A  .R  A )  .R  y
)  =  1R  ->  E. x  e.  R.  ( A  .R  x )  =  1R ) )
132, 12syl5 30 . . 3  |-  ( A  e.  R.  ->  ( 0R  <R  ( A  .R  A )  ->  E. x  e.  R.  ( A  .R  x )  =  1R ) )
1413imp 420 . 2  |-  ( ( A  e.  R.  /\  0R  <R  ( A  .R  A ) )  ->  E. x  e.  R.  ( A  .R  x
)  =  1R )
151, 14syldan 458 1  |-  ( ( A  e.  R.  /\  A  =/=  0R )  ->  E. x  e.  R.  ( A  .R  x
)  =  1R )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1624    e. wcel 1685    =/= wne 2447   E.wrex 2545   class class class wbr 4024  (class class class)co 5819   R.cnr 8484   0Rc0r 8485   1Rc1r 8486    .R cmr 8489    <R cltr 8490
This theorem is referenced by:  axrrecex  8780
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-recs 6383  df-rdg 6418  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6655  df-ec 6657  df-qs 6661  df-ni 8491  df-pli 8492  df-mi 8493  df-lti 8494  df-plpq 8527  df-mpq 8528  df-ltpq 8529  df-enq 8530  df-nq 8531  df-erq 8532  df-plq 8533  df-mq 8534  df-1nq 8535  df-rq 8536  df-ltnq 8537  df-np 8600  df-1p 8601  df-plp 8602  df-mp 8603  df-ltp 8604  df-plpr 8674  df-mpr 8675  df-enr 8676  df-nr 8677  df-plr 8678  df-mr 8679  df-ltr 8680  df-0r 8681  df-1r 8682  df-m1r 8683
  Copyright terms: Public domain W3C validator