MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recexsrlem Unicode version

Theorem recexsrlem 8741
Description: The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
recexsrlem  |-  ( 0R 
<R  A  ->  E. x  e.  R.  ( A  .R  x )  =  1R )
Distinct variable group:    x, A

Proof of Theorem recexsrlem
Dummy variables  y 
z  w  v  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 8709 . . . 4  |-  <R  C_  ( R.  X.  R. )
21brel 4753 . . 3  |-  ( 0R 
<R  A  ->  ( 0R  e.  R.  /\  A  e.  R. ) )
32simprd 449 . 2  |-  ( 0R 
<R  A  ->  A  e. 
R. )
4 df-nr 8698 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
5 breq2 4043 . . . 4  |-  ( [
<. y ,  z >. ]  ~R  =  A  -> 
( 0R  <R  [ <. y ,  z >. ]  ~R  <->  0R 
<R  A ) )
6 oveq1 5881 . . . . . 6  |-  ( [
<. y ,  z >. ]  ~R  =  A  -> 
( [ <. y ,  z >. ]  ~R  .R  x )  =  ( A  .R  x ) )
76eqeq1d 2304 . . . . 5  |-  ( [
<. y ,  z >. ]  ~R  =  A  -> 
( ( [ <. y ,  z >. ]  ~R  .R  x )  =  1R  <->  ( A  .R  x )  =  1R ) )
87rexbidv 2577 . . . 4  |-  ( [
<. y ,  z >. ]  ~R  =  A  -> 
( E. x  e. 
R.  ( [ <. y ,  z >. ]  ~R  .R  x )  =  1R  <->  E. x  e.  R.  ( A  .R  x )  =  1R ) )
95, 8imbi12d 311 . . 3  |-  ( [
<. y ,  z >. ]  ~R  =  A  -> 
( ( 0R  <R  [
<. y ,  z >. ]  ~R  ->  E. x  e.  R.  ( [ <. y ,  z >. ]  ~R  .R  x )  =  1R ) 
<->  ( 0R  <R  A  ->  E. x  e.  R.  ( A  .R  x
)  =  1R )
) )
10 gt0srpr 8716 . . . . 5  |-  ( 0R 
<R  [ <. y ,  z
>. ]  ~R  <->  z  <P  y )
11 ltexpri 8683 . . . . 5  |-  ( z 
<P  y  ->  E. w  e.  P.  ( z  +P.  w )  =  y )
1210, 11sylbi 187 . . . 4  |-  ( 0R 
<R  [ <. y ,  z
>. ]  ~R  ->  E. w  e.  P.  ( z  +P.  w )  =  y )
13 recexpr 8691 . . . . . 6  |-  ( w  e.  P.  ->  E. v  e.  P.  ( w  .P.  v )  =  1P )
14 1pr 8655 . . . . . . . . . . . 12  |-  1P  e.  P.
15 addclpr 8658 . . . . . . . . . . . 12  |-  ( ( v  e.  P.  /\  1P  e.  P. )  -> 
( v  +P.  1P )  e.  P. )
1614, 15mpan2 652 . . . . . . . . . . 11  |-  ( v  e.  P.  ->  (
v  +P.  1P )  e.  P. )
17 enrex 8708 . . . . . . . . . . . 12  |-  ~R  e.  _V
1817, 4ecopqsi 6732 . . . . . . . . . . 11  |-  ( ( ( v  +P.  1P )  e.  P.  /\  1P  e.  P. )  ->  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
1916, 14, 18sylancl 643 . . . . . . . . . 10  |-  ( v  e.  P.  ->  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
2019ad2antlr 707 . . . . . . . . 9  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  v  e.  P. )  /\  (
( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y ) )  ->  [ <. (
v  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
2116, 14jctir 524 . . . . . . . . . . . . . 14  |-  ( v  e.  P.  ->  (
( v  +P.  1P )  e.  P.  /\  1P  e.  P. ) )
2221anim2i 552 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  v  e.  P. )  ->  ( ( y  e.  P.  /\  z  e.  P. )  /\  (
( v  +P.  1P )  e.  P.  /\  1P  e.  P. ) ) )
2322adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  v  e.  P. )  /\  (
( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y ) )  ->  ( (
y  e.  P.  /\  z  e.  P. )  /\  ( ( v  +P. 
1P )  e.  P.  /\  1P  e.  P. )
) )
24 mulsrpr 8714 . . . . . . . . . . . 12  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  ( ( v  +P. 
1P )  e.  P.  /\  1P  e.  P. )
)  ->  ( [ <. y ,  z >. ]  ~R  .R  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( y  .P.  (
v  +P.  1P )
)  +P.  ( z  .P.  1P ) ) ,  ( ( y  .P. 
1P )  +P.  (
z  .P.  ( v  +P.  1P ) ) )
>. ]  ~R  )
2523, 24syl 15 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  v  e.  P. )  /\  (
( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y ) )  ->  ( [ <. y ,  z >. ]  ~R  .R  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( y  .P.  (
v  +P.  1P )
)  +P.  ( z  .P.  1P ) ) ,  ( ( y  .P. 
1P )  +P.  (
z  .P.  ( v  +P.  1P ) ) )
>. ]  ~R  )
26 oveq1 5881 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  +P.  w )  =  y  ->  (
( z  +P.  w
)  .P.  v )  =  ( y  .P.  v ) )
2726eqcomd 2301 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  +P.  w )  =  y  ->  (
y  .P.  v )  =  ( ( z  +P.  w )  .P.  v ) )
28 vex 2804 . . . . . . . . . . . . . . . . . . . . 21  |-  z  e. 
_V
29 vex 2804 . . . . . . . . . . . . . . . . . . . . 21  |-  w  e. 
_V
30 vex 2804 . . . . . . . . . . . . . . . . . . . . 21  |-  v  e. 
_V
31 mulcompr 8663 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  .P.  f )  =  ( f  .P.  u
)
32 distrpr 8668 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  .P.  ( f  +P.  x ) )  =  ( ( u  .P.  f )  +P.  (
u  .P.  x )
)
3328, 29, 30, 31, 32caovdir 6070 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  +P.  w )  .P.  v )  =  ( ( z  .P.  v )  +P.  (
w  .P.  v )
)
34 oveq2 5882 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( w  .P.  v )  =  1P  ->  (
( z  .P.  v
)  +P.  ( w  .P.  v ) )  =  ( ( z  .P.  v )  +P.  1P ) )
3533, 34syl5eq 2340 . . . . . . . . . . . . . . . . . . 19  |-  ( ( w  .P.  v )  =  1P  ->  (
( z  +P.  w
)  .P.  v )  =  ( ( z  .P.  v )  +P. 
1P ) )
3627, 35sylan9eqr 2350 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y )  ->  ( y  .P.  v )  =  ( ( z  .P.  v
)  +P.  1P )
)
3736oveq1d 5889 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y )  ->  ( ( y  .P.  v )  +P.  ( ( y  .P. 
1P )  +P.  (
z  .P.  1P )
) )  =  ( ( ( z  .P.  v )  +P.  1P )  +P.  ( ( y  .P.  1P )  +P.  ( z  .P.  1P ) ) ) )
38 ovex 5899 . . . . . . . . . . . . . . . . . 18  |-  ( z  .P.  v )  e. 
_V
3914elexi 2810 . . . . . . . . . . . . . . . . . 18  |-  1P  e.  _V
40 ovex 5899 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  .P.  1P )  +P.  ( z  .P. 
1P ) )  e. 
_V
41 addcompr 8661 . . . . . . . . . . . . . . . . . 18  |-  ( u  +P.  f )  =  ( f  +P.  u
)
42 addasspr 8662 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  +P.  f )  +P.  x )  =  ( u  +P.  (
f  +P.  x )
)
4338, 39, 40, 41, 42caov32 6063 . . . . . . . . . . . . . . . . 17  |-  ( ( ( z  .P.  v
)  +P.  1P )  +P.  ( ( y  .P. 
1P )  +P.  (
z  .P.  1P )
) )  =  ( ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  +P.  1P )
4437, 43syl6eq 2344 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y )  ->  ( ( y  .P.  v )  +P.  ( ( y  .P. 
1P )  +P.  (
z  .P.  1P )
) )  =  ( ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  +P.  1P ) )
4544oveq1d 5889 . . . . . . . . . . . . . . 15  |-  ( ( ( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y )  ->  ( ( ( y  .P.  v )  +P.  ( ( y  .P.  1P )  +P.  ( z  .P.  1P ) ) )  +P. 
1P )  =  ( ( ( ( z  .P.  v )  +P.  ( ( y  .P. 
1P )  +P.  (
z  .P.  1P )
) )  +P.  1P )  +P.  1P ) )
46 addasspr 8662 . . . . . . . . . . . . . . 15  |-  ( ( ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  +P.  1P )  +P. 
1P )  =  ( ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  +P.  ( 1P  +P.  1P ) )
4745, 46syl6eq 2344 . . . . . . . . . . . . . 14  |-  ( ( ( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y )  ->  ( ( ( y  .P.  v )  +P.  ( ( y  .P.  1P )  +P.  ( z  .P.  1P ) ) )  +P. 
1P )  =  ( ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  +P.  ( 1P  +P.  1P ) ) )
48 distrpr 8668 . . . . . . . . . . . . . . . . 17  |-  ( y  .P.  ( v  +P. 
1P ) )  =  ( ( y  .P.  v )  +P.  (
y  .P.  1P )
)
4948oveq1i 5884 . . . . . . . . . . . . . . . 16  |-  ( ( y  .P.  ( v  +P.  1P ) )  +P.  ( z  .P. 
1P ) )  =  ( ( ( y  .P.  v )  +P.  ( y  .P.  1P ) )  +P.  (
z  .P.  1P )
)
50 addasspr 8662 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  .P.  v
)  +P.  ( y  .P.  1P ) )  +P.  ( z  .P.  1P ) )  =  ( ( y  .P.  v
)  +P.  ( (
y  .P.  1P )  +P.  ( z  .P.  1P ) ) )
5149, 50eqtri 2316 . . . . . . . . . . . . . . 15  |-  ( ( y  .P.  ( v  +P.  1P ) )  +P.  ( z  .P. 
1P ) )  =  ( ( y  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )
5251oveq1i 5884 . . . . . . . . . . . . . 14  |-  ( ( ( y  .P.  (
v  +P.  1P )
)  +P.  ( z  .P.  1P ) )  +P. 
1P )  =  ( ( ( y  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  +P.  1P )
53 distrpr 8668 . . . . . . . . . . . . . . . . 17  |-  ( z  .P.  ( v  +P. 
1P ) )  =  ( ( z  .P.  v )  +P.  (
z  .P.  1P )
)
5453oveq2i 5885 . . . . . . . . . . . . . . . 16  |-  ( ( y  .P.  1P )  +P.  ( z  .P.  ( v  +P.  1P ) ) )  =  ( ( y  .P. 
1P )  +P.  (
( z  .P.  v
)  +P.  ( z  .P.  1P ) ) )
55 ovex 5899 . . . . . . . . . . . . . . . . 17  |-  ( y  .P.  1P )  e. 
_V
56 ovex 5899 . . . . . . . . . . . . . . . . 17  |-  ( z  .P.  1P )  e. 
_V
5755, 38, 56, 41, 42caov12 6064 . . . . . . . . . . . . . . . 16  |-  ( ( y  .P.  1P )  +P.  ( ( z  .P.  v )  +P.  ( z  .P.  1P ) ) )  =  ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )
5854, 57eqtri 2316 . . . . . . . . . . . . . . 15  |-  ( ( y  .P.  1P )  +P.  ( z  .P.  ( v  +P.  1P ) ) )  =  ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )
5958oveq1i 5884 . . . . . . . . . . . . . 14  |-  ( ( ( y  .P.  1P )  +P.  ( z  .P.  ( v  +P.  1P ) ) )  +P.  ( 1P  +P.  1P ) )  =  ( ( ( z  .P.  v )  +P.  (
( y  .P.  1P )  +P.  ( z  .P. 
1P ) ) )  +P.  ( 1P  +P.  1P ) )
6047, 52, 593eqtr4g 2353 . . . . . . . . . . . . 13  |-  ( ( ( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y )  ->  ( ( ( y  .P.  ( v  +P.  1P ) )  +P.  ( z  .P. 
1P ) )  +P. 
1P )  =  ( ( ( y  .P. 
1P )  +P.  (
z  .P.  ( v  +P.  1P ) ) )  +P.  ( 1P  +P.  1P ) ) )
61 mulclpr 8660 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  P.  /\  ( v  +P.  1P )  e.  P. )  ->  ( y  .P.  (
v  +P.  1P )
)  e.  P. )
6216, 61sylan2 460 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  P.  /\  v  e.  P. )  ->  ( y  .P.  (
v  +P.  1P )
)  e.  P. )
63 mulclpr 8660 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  P.  /\  1P  e.  P. )  -> 
( z  .P.  1P )  e.  P. )
6414, 63mpan2 652 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  P.  ->  (
z  .P.  1P )  e.  P. )
65 addclpr 8658 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  .P.  (
v  +P.  1P )
)  e.  P.  /\  ( z  .P.  1P )  e.  P. )  ->  ( ( y  .P.  ( v  +P.  1P ) )  +P.  (
z  .P.  1P )
)  e.  P. )
6662, 64, 65syl2an 463 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  P.  /\  v  e.  P. )  /\  z  e.  P. )  ->  ( ( y  .P.  ( v  +P. 
1P ) )  +P.  ( z  .P.  1P ) )  e.  P. )
6766an32s 779 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  v  e.  P. )  ->  ( ( y  .P.  ( v  +P. 
1P ) )  +P.  ( z  .P.  1P ) )  e.  P. )
68 mulclpr 8660 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  P.  /\  1P  e.  P. )  -> 
( y  .P.  1P )  e.  P. )
6914, 68mpan2 652 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  P.  ->  (
y  .P.  1P )  e.  P. )
70 mulclpr 8660 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  P.  /\  ( v  +P.  1P )  e.  P. )  ->  ( z  .P.  (
v  +P.  1P )
)  e.  P. )
7116, 70sylan2 460 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  P.  /\  v  e.  P. )  ->  ( z  .P.  (
v  +P.  1P )
)  e.  P. )
72 addclpr 8658 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  .P.  1P )  e.  P.  /\  (
z  .P.  ( v  +P.  1P ) )  e. 
P. )  ->  (
( y  .P.  1P )  +P.  ( z  .P.  ( v  +P.  1P ) ) )  e. 
P. )
7369, 71, 72syl2an 463 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  P.  /\  ( z  e.  P.  /\  v  e.  P. )
)  ->  ( (
y  .P.  1P )  +P.  ( z  .P.  (
v  +P.  1P )
) )  e.  P. )
7473anassrs 629 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  v  e.  P. )  ->  ( ( y  .P.  1P )  +P.  ( z  .P.  (
v  +P.  1P )
) )  e.  P. )
7567, 74jca 518 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  v  e.  P. )  ->  ( ( ( y  .P.  ( v  +P.  1P ) )  +P.  ( z  .P. 
1P ) )  e. 
P.  /\  ( (
y  .P.  1P )  +P.  ( z  .P.  (
v  +P.  1P )
) )  e.  P. ) )
76 addclpr 8658 . . . . . . . . . . . . . . . 16  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
7714, 14, 76mp2an 653 . . . . . . . . . . . . . . 15  |-  ( 1P 
+P.  1P )  e.  P.
7877, 14pm3.2i 441 . . . . . . . . . . . . . 14  |-  ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. )
79 enreceq 8707 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( y  .P.  ( v  +P. 
1P ) )  +P.  ( z  .P.  1P ) )  e.  P.  /\  ( ( y  .P. 
1P )  +P.  (
z  .P.  ( v  +P.  1P ) ) )  e.  P. )  /\  ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. ( ( y  .P.  (
v  +P.  1P )
)  +P.  ( z  .P.  1P ) ) ,  ( ( y  .P. 
1P )  +P.  (
z  .P.  ( v  +P.  1P ) ) )
>. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( ( y  .P.  ( v  +P.  1P ) )  +P.  (
z  .P.  1P )
)  +P.  1P )  =  ( ( ( y  .P.  1P )  +P.  ( z  .P.  ( v  +P.  1P ) ) )  +P.  ( 1P  +P.  1P ) ) ) )
8075, 78, 79sylancl 643 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  v  e.  P. )  ->  ( [ <. ( ( y  .P.  (
v  +P.  1P )
)  +P.  ( z  .P.  1P ) ) ,  ( ( y  .P. 
1P )  +P.  (
z  .P.  ( v  +P.  1P ) ) )
>. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( ( y  .P.  ( v  +P.  1P ) )  +P.  (
z  .P.  1P )
)  +P.  1P )  =  ( ( ( y  .P.  1P )  +P.  ( z  .P.  ( v  +P.  1P ) ) )  +P.  ( 1P  +P.  1P ) ) ) )
8160, 80syl5ibr 212 . . . . . . . . . . . 12  |-  ( ( ( y  e.  P.  /\  z  e.  P. )  /\  v  e.  P. )  ->  ( ( ( w  .P.  v )  =  1P  /\  (
z  +P.  w )  =  y )  ->  [ <. ( ( y  .P.  ( v  +P. 
1P ) )  +P.  ( z  .P.  1P ) ) ,  ( ( y  .P.  1P )  +P.  ( z  .P.  ( v  +P.  1P ) ) ) >. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  ) )
8281imp 418 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  v  e.  P. )  /\  (
( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y ) )  ->  [ <. (
( y  .P.  (
v  +P.  1P )
)  +P.  ( z  .P.  1P ) ) ,  ( ( y  .P. 
1P )  +P.  (
z  .P.  ( v  +P.  1P ) ) )
>. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
8325, 82eqtrd 2328 . . . . . . . . . 10  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  v  e.  P. )  /\  (
( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y ) )  ->  ( [ <. y ,  z >. ]  ~R  .R  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
84 df-1r 8703 . . . . . . . . . 10  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
8583, 84syl6eqr 2346 . . . . . . . . 9  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  v  e.  P. )  /\  (
( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y ) )  ->  ( [ <. y ,  z >. ]  ~R  .R  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  )  =  1R )
86 oveq2 5882 . . . . . . . . . . 11  |-  ( x  =  [ <. (
v  +P.  1P ) ,  1P >. ]  ~R  ->  ( [ <. y ,  z
>. ]  ~R  .R  x
)  =  ( [
<. y ,  z >. ]  ~R  .R  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  ) )
8786eqeq1d 2304 . . . . . . . . . 10  |-  ( x  =  [ <. (
v  +P.  1P ) ,  1P >. ]  ~R  ->  ( ( [ <. y ,  z >. ]  ~R  .R  x )  =  1R  <->  ( [ <. y ,  z
>. ]  ~R  .R  [ <. ( v  +P.  1P ) ,  1P >. ]  ~R  )  =  1R )
)
8887rspcev 2897 . . . . . . . . 9  |-  ( ( [ <. ( v  +P. 
1P ) ,  1P >. ]  ~R  e.  R.  /\  ( [ <. y ,  z >. ]  ~R  .R 
[ <. ( v  +P. 
1P ) ,  1P >. ]  ~R  )  =  1R )  ->  E. x  e.  R.  ( [ <. y ,  z >. ]  ~R  .R  x )  =  1R )
8920, 85, 88syl2anc 642 . . . . . . . 8  |-  ( ( ( ( y  e. 
P.  /\  z  e.  P. )  /\  v  e.  P. )  /\  (
( w  .P.  v
)  =  1P  /\  ( z  +P.  w
)  =  y ) )  ->  E. x  e.  R.  ( [ <. y ,  z >. ]  ~R  .R  x )  =  1R )
9089exp43 595 . . . . . . 7  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( v  e.  P.  ->  ( ( w  .P.  v )  =  1P 
->  ( ( z  +P.  w )  =  y  ->  E. x  e.  R.  ( [ <. y ,  z
>. ]  ~R  .R  x
)  =  1R )
) ) )
9190rexlimdv 2679 . . . . . 6  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( E. v  e. 
P.  ( w  .P.  v )  =  1P 
->  ( ( z  +P.  w )  =  y  ->  E. x  e.  R.  ( [ <. y ,  z
>. ]  ~R  .R  x
)  =  1R )
) )
9213, 91syl5 28 . . . . 5  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( w  e.  P.  ->  ( ( z  +P.  w )  =  y  ->  E. x  e.  R.  ( [ <. y ,  z
>. ]  ~R  .R  x
)  =  1R )
) )
9392rexlimdv 2679 . . . 4  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( E. w  e. 
P.  ( z  +P.  w )  =  y  ->  E. x  e.  R.  ( [ <. y ,  z
>. ]  ~R  .R  x
)  =  1R )
)
9412, 93syl5 28 . . 3  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( 0R  <R  [ <. y ,  z >. ]  ~R  ->  E. x  e.  R.  ( [ <. y ,  z
>. ]  ~R  .R  x
)  =  1R )
)
954, 9, 94ecoptocl 6764 . 2  |-  ( A  e.  R.  ->  ( 0R  <R  A  ->  E. x  e.  R.  ( A  .R  x )  =  1R ) )
963, 95mpcom 32 1  |-  ( 0R 
<R  A  ->  E. x  e.  R.  ( A  .R  x )  =  1R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   E.wrex 2557   <.cop 3656   class class class wbr 4039  (class class class)co 5874   [cec 6674   P.cnp 8497   1Pc1p 8498    +P. cpp 8499    .P. cmp 8500    <P cltp 8501    ~R cer 8504   R.cnr 8505   0Rc0r 8506   1Rc1r 8507    .R cmr 8510    <R cltr 8511
This theorem is referenced by:  recexsr  8745
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-omul 6500  df-er 6676  df-ec 6678  df-qs 6682  df-ni 8512  df-pli 8513  df-mi 8514  df-lti 8515  df-plpq 8548  df-mpq 8549  df-ltpq 8550  df-enq 8551  df-nq 8552  df-erq 8553  df-plq 8554  df-mq 8555  df-1nq 8556  df-rq 8557  df-ltnq 8558  df-np 8621  df-1p 8622  df-plp 8623  df-mp 8624  df-ltp 8625  df-mpr 8696  df-enr 8697  df-nr 8698  df-mr 8700  df-ltr 8701  df-0r 8702  df-1r 8703
  Copyright terms: Public domain W3C validator