MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reclem2pr Unicode version

Theorem reclem2pr 8672
Description: Lemma for Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 30-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
reclempr.1  |-  B  =  { x  |  E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A ) }
Assertion
Ref Expression
reclem2pr  |-  ( A  e.  P.  ->  B  e.  P. )
Distinct variable groups:    x, y, A    x, B
Allowed substitution hint:    B( y)

Proof of Theorem reclem2pr
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 prpssnq 8614 . . . . . 6  |-  ( A  e.  P.  ->  A  C.  Q. )
2 pssnel 3519 . . . . . 6  |-  ( A 
C.  Q.  ->  E. x
( x  e.  Q.  /\ 
-.  x  e.  A
) )
3 recclnq 8590 . . . . . . . . . . 11  |-  ( x  e.  Q.  ->  ( *Q `  x )  e. 
Q. )
4 nsmallnq 8601 . . . . . . . . . . 11  |-  ( ( *Q `  x )  e.  Q.  ->  E. z 
z  <Q  ( *Q `  x ) )
53, 4syl 15 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  E. z 
z  <Q  ( *Q `  x ) )
65adantr 451 . . . . . . . . 9  |-  ( ( x  e.  Q.  /\  -.  x  e.  A
)  ->  E. z 
z  <Q  ( *Q `  x ) )
7 recrecnq 8591 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  Q.  ->  ( *Q `  ( *Q `  x ) )  =  x )
87eleq1d 2349 . . . . . . . . . . . . . . . 16  |-  ( x  e.  Q.  ->  (
( *Q `  ( *Q `  x ) )  e.  A  <->  x  e.  A ) )
98notbid 285 . . . . . . . . . . . . . . 15  |-  ( x  e.  Q.  ->  ( -.  ( *Q `  ( *Q `  x ) )  e.  A  <->  -.  x  e.  A ) )
109anbi2d 684 . . . . . . . . . . . . . 14  |-  ( x  e.  Q.  ->  (
( z  <Q  ( *Q `  x )  /\  -.  ( *Q `  ( *Q `  x ) )  e.  A )  <->  ( z  <Q  ( *Q `  x
)  /\  -.  x  e.  A ) ) )
11 fvex 5539 . . . . . . . . . . . . . . 15  |-  ( *Q
`  x )  e. 
_V
12 breq2 4027 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( *Q `  x )  ->  (
z  <Q  y  <->  z  <Q  ( *Q `  x ) ) )
13 fveq2 5525 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( *Q `  x )  ->  ( *Q `  y )  =  ( *Q `  ( *Q `  x ) ) )
1413eleq1d 2349 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( *Q `  x )  ->  (
( *Q `  y
)  e.  A  <->  ( *Q `  ( *Q `  x
) )  e.  A
) )
1514notbid 285 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( *Q `  x )  ->  ( -.  ( *Q `  y
)  e.  A  <->  -.  ( *Q `  ( *Q `  x ) )  e.  A ) )
1612, 15anbi12d 691 . . . . . . . . . . . . . . 15  |-  ( y  =  ( *Q `  x )  ->  (
( z  <Q  y  /\  -.  ( *Q `  y )  e.  A
)  <->  ( z  <Q 
( *Q `  x
)  /\  -.  ( *Q `  ( *Q `  x ) )  e.  A ) ) )
1711, 16spcev 2875 . . . . . . . . . . . . . 14  |-  ( ( z  <Q  ( *Q `  x )  /\  -.  ( *Q `  ( *Q
`  x ) )  e.  A )  ->  E. y ( z  <Q 
y  /\  -.  ( *Q `  y )  e.  A ) )
1810, 17syl6bir 220 . . . . . . . . . . . . 13  |-  ( x  e.  Q.  ->  (
( z  <Q  ( *Q `  x )  /\  -.  x  e.  A
)  ->  E. y
( z  <Q  y  /\  -.  ( *Q `  y )  e.  A
) ) )
19 vex 2791 . . . . . . . . . . . . . 14  |-  z  e. 
_V
20 breq1 4026 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  (
x  <Q  y  <->  z  <Q  y ) )
2120anbi1d 685 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  (
( x  <Q  y  /\  -.  ( *Q `  y )  e.  A
)  <->  ( z  <Q 
y  /\  -.  ( *Q `  y )  e.  A ) ) )
2221exbidv 1612 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  ( E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A )  <->  E. y
( z  <Q  y  /\  -.  ( *Q `  y )  e.  A
) ) )
23 reclempr.1 . . . . . . . . . . . . . 14  |-  B  =  { x  |  E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A ) }
2419, 22, 23elab2 2917 . . . . . . . . . . . . 13  |-  ( z  e.  B  <->  E. y
( z  <Q  y  /\  -.  ( *Q `  y )  e.  A
) )
2518, 24syl6ibr 218 . . . . . . . . . . . 12  |-  ( x  e.  Q.  ->  (
( z  <Q  ( *Q `  x )  /\  -.  x  e.  A
)  ->  z  e.  B ) )
2625exp3acom23 1362 . . . . . . . . . . 11  |-  ( x  e.  Q.  ->  ( -.  x  e.  A  ->  ( z  <Q  ( *Q `  x )  -> 
z  e.  B ) ) )
2726imp 418 . . . . . . . . . 10  |-  ( ( x  e.  Q.  /\  -.  x  e.  A
)  ->  ( z  <Q  ( *Q `  x
)  ->  z  e.  B ) )
2827eximdv 1608 . . . . . . . . 9  |-  ( ( x  e.  Q.  /\  -.  x  e.  A
)  ->  ( E. z  z  <Q  ( *Q
`  x )  ->  E. z  z  e.  B ) )
296, 28mpd 14 . . . . . . . 8  |-  ( ( x  e.  Q.  /\  -.  x  e.  A
)  ->  E. z 
z  e.  B )
30 n0 3464 . . . . . . . 8  |-  ( B  =/=  (/)  <->  E. z  z  e.  B )
3129, 30sylibr 203 . . . . . . 7  |-  ( ( x  e.  Q.  /\  -.  x  e.  A
)  ->  B  =/=  (/) )
3231exlimiv 1666 . . . . . 6  |-  ( E. x ( x  e. 
Q.  /\  -.  x  e.  A )  ->  B  =/=  (/) )
331, 2, 323syl 18 . . . . 5  |-  ( A  e.  P.  ->  B  =/=  (/) )
34 0pss 3492 . . . . 5  |-  ( (/)  C.  B  <->  B  =/=  (/) )
3533, 34sylibr 203 . . . 4  |-  ( A  e.  P.  ->  (/)  C.  B
)
36 prn0 8613 . . . . . . 7  |-  ( A  e.  P.  ->  A  =/=  (/) )
37 elprnq 8615 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  z  e.  Q. )
38 recrecnq 8591 . . . . . . . . . . . . . . . 16  |-  ( z  e.  Q.  ->  ( *Q `  ( *Q `  z ) )  =  z )
3938eleq1d 2349 . . . . . . . . . . . . . . 15  |-  ( z  e.  Q.  ->  (
( *Q `  ( *Q `  z ) )  e.  A  <->  z  e.  A ) )
4039anbi2d 684 . . . . . . . . . . . . . 14  |-  ( z  e.  Q.  ->  (
( A  e.  P.  /\  ( *Q `  ( *Q `  z ) )  e.  A )  <->  ( A  e.  P.  /\  z  e.  A ) ) )
4137, 40syl 15 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( ( A  e. 
P.  /\  ( *Q `  ( *Q `  z
) )  e.  A
)  <->  ( A  e. 
P.  /\  z  e.  A ) ) )
42 fvex 5539 . . . . . . . . . . . . . 14  |-  ( *Q
`  z )  e. 
_V
43 fveq2 5525 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( *Q `  z )  ->  ( *Q `  x )  =  ( *Q `  ( *Q `  z ) ) )
4443eleq1d 2349 . . . . . . . . . . . . . . 15  |-  ( x  =  ( *Q `  z )  ->  (
( *Q `  x
)  e.  A  <->  ( *Q `  ( *Q `  z
) )  e.  A
) )
4544anbi2d 684 . . . . . . . . . . . . . 14  |-  ( x  =  ( *Q `  z )  ->  (
( A  e.  P.  /\  ( *Q `  x
)  e.  A )  <-> 
( A  e.  P.  /\  ( *Q `  ( *Q `  z ) )  e.  A ) ) )
4642, 45spcev 2875 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  ( *Q `  ( *Q
`  z ) )  e.  A )  ->  E. x ( A  e. 
P.  /\  ( *Q `  x )  e.  A
) )
4741, 46syl6bir 220 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( ( A  e. 
P.  /\  z  e.  A )  ->  E. x
( A  e.  P.  /\  ( *Q `  x
)  e.  A ) ) )
4847pm2.43i 43 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  E. x ( A  e.  P.  /\  ( *Q `  x )  e.  A ) )
49 elprnq 8615 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  ( *Q `  x )  e.  A )  -> 
( *Q `  x
)  e.  Q. )
50 dmrecnq 8592 . . . . . . . . . . . . . . 15  |-  dom  *Q  =  Q.
51 0nnq 8548 . . . . . . . . . . . . . . 15  |-  -.  (/)  e.  Q.
5250, 51ndmfvrcl 5553 . . . . . . . . . . . . . 14  |-  ( ( *Q `  x )  e.  Q.  ->  x  e.  Q. )
5349, 52syl 15 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  ( *Q `  x )  e.  A )  ->  x  e.  Q. )
54 ltrnq 8603 . . . . . . . . . . . . . . . 16  |-  ( x 
<Q  y  <->  ( *Q `  y )  <Q  ( *Q `  x ) )
55 prcdnq 8617 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  ( *Q `  x )  e.  A )  -> 
( ( *Q `  y )  <Q  ( *Q `  x )  -> 
( *Q `  y
)  e.  A ) )
5654, 55syl5bi 208 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  ( *Q `  x )  e.  A )  -> 
( x  <Q  y  ->  ( *Q `  y
)  e.  A ) )
5756alrimiv 1617 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  ( *Q `  x )  e.  A )  ->  A. y ( x  <Q  y  ->  ( *Q `  y )  e.  A
) )
5823abeq2i 2390 . . . . . . . . . . . . . . . 16  |-  ( x  e.  B  <->  E. y
( x  <Q  y  /\  -.  ( *Q `  y )  e.  A
) )
59 exanali 1572 . . . . . . . . . . . . . . . 16  |-  ( E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A )  <->  -.  A. y
( x  <Q  y  ->  ( *Q `  y
)  e.  A ) )
6058, 59bitri 240 . . . . . . . . . . . . . . 15  |-  ( x  e.  B  <->  -.  A. y
( x  <Q  y  ->  ( *Q `  y
)  e.  A ) )
6160con2bii 322 . . . . . . . . . . . . . 14  |-  ( A. y ( x  <Q  y  ->  ( *Q `  y )  e.  A
)  <->  -.  x  e.  B )
6257, 61sylib 188 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  ( *Q `  x )  e.  A )  ->  -.  x  e.  B
)
6353, 62jca 518 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  ( *Q `  x )  e.  A )  -> 
( x  e.  Q.  /\ 
-.  x  e.  B
) )
6463eximi 1563 . . . . . . . . . . 11  |-  ( E. x ( A  e. 
P.  /\  ( *Q `  x )  e.  A
)  ->  E. x
( x  e.  Q.  /\ 
-.  x  e.  B
) )
6548, 64syl 15 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  E. x ( x  e.  Q.  /\  -.  x  e.  B )
)
6665ex 423 . . . . . . . . 9  |-  ( A  e.  P.  ->  (
z  e.  A  ->  E. x ( x  e. 
Q.  /\  -.  x  e.  B ) ) )
6766exlimdv 1664 . . . . . . . 8  |-  ( A  e.  P.  ->  ( E. z  z  e.  A  ->  E. x ( x  e.  Q.  /\  -.  x  e.  B )
) )
68 n0 3464 . . . . . . . 8  |-  ( A  =/=  (/)  <->  E. z  z  e.  A )
69 nss 3236 . . . . . . . 8  |-  ( -. 
Q.  C_  B  <->  E. x
( x  e.  Q.  /\ 
-.  x  e.  B
) )
7067, 68, 693imtr4g 261 . . . . . . 7  |-  ( A  e.  P.  ->  ( A  =/=  (/)  ->  -.  Q.  C_  B ) )
7136, 70mpd 14 . . . . . 6  |-  ( A  e.  P.  ->  -.  Q.  C_  B )
72 ltrelnq 8550 . . . . . . . . . . . 12  |-  <Q  C_  ( Q.  X.  Q. )
7372brel 4737 . . . . . . . . . . 11  |-  ( x 
<Q  y  ->  ( x  e.  Q.  /\  y  e.  Q. ) )
7473simpld 445 . . . . . . . . . 10  |-  ( x 
<Q  y  ->  x  e. 
Q. )
7574adantr 451 . . . . . . . . 9  |-  ( ( x  <Q  y  /\  -.  ( *Q `  y
)  e.  A )  ->  x  e.  Q. )
7675exlimiv 1666 . . . . . . . 8  |-  ( E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A )  ->  x  e.  Q. )
7758, 76sylbi 187 . . . . . . 7  |-  ( x  e.  B  ->  x  e.  Q. )
7877ssriv 3184 . . . . . 6  |-  B  C_  Q.
7971, 78jctil 523 . . . . 5  |-  ( A  e.  P.  ->  ( B  C_  Q.  /\  -.  Q.  C_  B ) )
80 dfpss3 3262 . . . . 5  |-  ( B 
C.  Q.  <->  ( B  C_  Q.  /\  -.  Q.  C_  B ) )
8179, 80sylibr 203 . . . 4  |-  ( A  e.  P.  ->  B  C.  Q. )
8235, 81jca 518 . . 3  |-  ( A  e.  P.  ->  ( (/)  C.  B  /\  B  C.  Q. ) )
83 ltsonq 8593 . . . . . . . . . . . 12  |-  <Q  Or  Q.
8483, 72sotri 5070 . . . . . . . . . . 11  |-  ( ( z  <Q  x  /\  x  <Q  y )  -> 
z  <Q  y )
8584ex 423 . . . . . . . . . 10  |-  ( z 
<Q  x  ->  ( x 
<Q  y  ->  z  <Q 
y ) )
8685anim1d 547 . . . . . . . . 9  |-  ( z 
<Q  x  ->  ( ( x  <Q  y  /\  -.  ( *Q `  y
)  e.  A )  ->  ( z  <Q 
y  /\  -.  ( *Q `  y )  e.  A ) ) )
8786eximdv 1608 . . . . . . . 8  |-  ( z 
<Q  x  ->  ( E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A )  ->  E. y
( z  <Q  y  /\  -.  ( *Q `  y )  e.  A
) ) )
8887, 58, 243imtr4g 261 . . . . . . 7  |-  ( z 
<Q  x  ->  ( x  e.  B  ->  z  e.  B ) )
8988com12 27 . . . . . 6  |-  ( x  e.  B  ->  (
z  <Q  x  ->  z  e.  B ) )
9089alrimiv 1617 . . . . 5  |-  ( x  e.  B  ->  A. z
( z  <Q  x  ->  z  e.  B ) )
91 nfe1 1706 . . . . . . . . . 10  |-  F/ y E. y ( x 
<Q  y  /\  -.  ( *Q `  y )  e.  A )
9291nfab 2423 . . . . . . . . 9  |-  F/_ y { x  |  E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A ) }
9323, 92nfcxfr 2416 . . . . . . . 8  |-  F/_ y B
94 nfv 1605 . . . . . . . 8  |-  F/ y  x  <Q  z
9593, 94nfrex 2598 . . . . . . 7  |-  F/ y E. z  e.  B  x  <Q  z
96 19.8a 1718 . . . . . . . . . . . . . 14  |-  ( ( z  <Q  y  /\  -.  ( *Q `  y
)  e.  A )  ->  E. y ( z 
<Q  y  /\  -.  ( *Q `  y )  e.  A ) )
9796, 24sylibr 203 . . . . . . . . . . . . 13  |-  ( ( z  <Q  y  /\  -.  ( *Q `  y
)  e.  A )  ->  z  e.  B
)
9897adantll 694 . . . . . . . . . . . 12  |-  ( ( ( x  <Q  z  /\  z  <Q  y )  /\  -.  ( *Q
`  y )  e.  A )  ->  z  e.  B )
99 simpll 730 . . . . . . . . . . . 12  |-  ( ( ( x  <Q  z  /\  z  <Q  y )  /\  -.  ( *Q
`  y )  e.  A )  ->  x  <Q  z )
10098, 99jca 518 . . . . . . . . . . 11  |-  ( ( ( x  <Q  z  /\  z  <Q  y )  /\  -.  ( *Q
`  y )  e.  A )  ->  (
z  e.  B  /\  x  <Q  z ) )
101100expcom 424 . . . . . . . . . 10  |-  ( -.  ( *Q `  y
)  e.  A  -> 
( ( x  <Q  z  /\  z  <Q  y
)  ->  ( z  e.  B  /\  x  <Q  z ) ) )
102101eximdv 1608 . . . . . . . . 9  |-  ( -.  ( *Q `  y
)  e.  A  -> 
( E. z ( x  <Q  z  /\  z  <Q  y )  ->  E. z ( z  e.  B  /\  x  <Q  z ) ) )
103 ltbtwnnq 8602 . . . . . . . . 9  |-  ( x 
<Q  y  <->  E. z ( x 
<Q  z  /\  z  <Q  y ) )
104 df-rex 2549 . . . . . . . . 9  |-  ( E. z  e.  B  x 
<Q  z  <->  E. z ( z  e.  B  /\  x  <Q  z ) )
105102, 103, 1043imtr4g 261 . . . . . . . 8  |-  ( -.  ( *Q `  y
)  e.  A  -> 
( x  <Q  y  ->  E. z  e.  B  x  <Q  z ) )
106105impcom 419 . . . . . . 7  |-  ( ( x  <Q  y  /\  -.  ( *Q `  y
)  e.  A )  ->  E. z  e.  B  x  <Q  z )
10795, 106exlimi 1801 . . . . . 6  |-  ( E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A )  ->  E. z  e.  B  x  <Q  z )
10858, 107sylbi 187 . . . . 5  |-  ( x  e.  B  ->  E. z  e.  B  x  <Q  z )
10990, 108jca 518 . . . 4  |-  ( x  e.  B  ->  ( A. z ( z  <Q  x  ->  z  e.  B
)  /\  E. z  e.  B  x  <Q  z ) )
110109rgen 2608 . . 3  |-  A. x  e.  B  ( A. z ( z  <Q  x  ->  z  e.  B
)  /\  E. z  e.  B  x  <Q  z )
11182, 110jctir 524 . 2  |-  ( A  e.  P.  ->  (
( (/)  C.  B  /\  B  C.  Q. )  /\  A. x  e.  B  ( A. z ( z 
<Q  x  ->  z  e.  B )  /\  E. z  e.  B  x  <Q  z ) ) )
112 elnp 8611 . 2  |-  ( B  e.  P.  <->  ( ( (/)  C.  B  /\  B  C.  Q. )  /\  A. x  e.  B  ( A. z ( z  <Q  x  ->  z  e.  B
)  /\  E. z  e.  B  x  <Q  z ) ) )
113111, 112sylibr 203 1  |-  ( A  e.  P.  ->  B  e.  P. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269    =/= wne 2446   A.wral 2543   E.wrex 2544    C_ wss 3152    C. wpss 3153   (/)c0 3455   class class class wbr 4023   ` cfv 5255   Q.cnq 8474   *Qcrq 8479    <Q cltq 8480   P.cnp 8481
This theorem is referenced by:  reclem3pr  8673  reclem4pr  8674  recexpr  8675
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-omul 6484  df-er 6660  df-ni 8496  df-pli 8497  df-mi 8498  df-lti 8499  df-plpq 8532  df-mpq 8533  df-ltpq 8534  df-enq 8535  df-nq 8536  df-erq 8537  df-plq 8538  df-mq 8539  df-1nq 8540  df-rq 8541  df-ltnq 8542  df-np 8605
  Copyright terms: Public domain W3C validator