MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reclem2pr Unicode version

Theorem reclem2pr 8688
Description: Lemma for Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 30-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
reclempr.1  |-  B  =  { x  |  E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A ) }
Assertion
Ref Expression
reclem2pr  |-  ( A  e.  P.  ->  B  e.  P. )
Distinct variable groups:    x, y, A    x, B
Allowed substitution hint:    B( y)

Proof of Theorem reclem2pr
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 prpssnq 8630 . . . . . 6  |-  ( A  e.  P.  ->  A  C.  Q. )
2 pssnel 3532 . . . . . 6  |-  ( A 
C.  Q.  ->  E. x
( x  e.  Q.  /\ 
-.  x  e.  A
) )
3 recclnq 8606 . . . . . . . . . . 11  |-  ( x  e.  Q.  ->  ( *Q `  x )  e. 
Q. )
4 nsmallnq 8617 . . . . . . . . . . 11  |-  ( ( *Q `  x )  e.  Q.  ->  E. z 
z  <Q  ( *Q `  x ) )
53, 4syl 15 . . . . . . . . . 10  |-  ( x  e.  Q.  ->  E. z 
z  <Q  ( *Q `  x ) )
65adantr 451 . . . . . . . . 9  |-  ( ( x  e.  Q.  /\  -.  x  e.  A
)  ->  E. z 
z  <Q  ( *Q `  x ) )
7 recrecnq 8607 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  Q.  ->  ( *Q `  ( *Q `  x ) )  =  x )
87eleq1d 2362 . . . . . . . . . . . . . . . 16  |-  ( x  e.  Q.  ->  (
( *Q `  ( *Q `  x ) )  e.  A  <->  x  e.  A ) )
98notbid 285 . . . . . . . . . . . . . . 15  |-  ( x  e.  Q.  ->  ( -.  ( *Q `  ( *Q `  x ) )  e.  A  <->  -.  x  e.  A ) )
109anbi2d 684 . . . . . . . . . . . . . 14  |-  ( x  e.  Q.  ->  (
( z  <Q  ( *Q `  x )  /\  -.  ( *Q `  ( *Q `  x ) )  e.  A )  <->  ( z  <Q  ( *Q `  x
)  /\  -.  x  e.  A ) ) )
11 fvex 5555 . . . . . . . . . . . . . . 15  |-  ( *Q
`  x )  e. 
_V
12 breq2 4043 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( *Q `  x )  ->  (
z  <Q  y  <->  z  <Q  ( *Q `  x ) ) )
13 fveq2 5541 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( *Q `  x )  ->  ( *Q `  y )  =  ( *Q `  ( *Q `  x ) ) )
1413eleq1d 2362 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( *Q `  x )  ->  (
( *Q `  y
)  e.  A  <->  ( *Q `  ( *Q `  x
) )  e.  A
) )
1514notbid 285 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( *Q `  x )  ->  ( -.  ( *Q `  y
)  e.  A  <->  -.  ( *Q `  ( *Q `  x ) )  e.  A ) )
1612, 15anbi12d 691 . . . . . . . . . . . . . . 15  |-  ( y  =  ( *Q `  x )  ->  (
( z  <Q  y  /\  -.  ( *Q `  y )  e.  A
)  <->  ( z  <Q 
( *Q `  x
)  /\  -.  ( *Q `  ( *Q `  x ) )  e.  A ) ) )
1711, 16spcev 2888 . . . . . . . . . . . . . 14  |-  ( ( z  <Q  ( *Q `  x )  /\  -.  ( *Q `  ( *Q
`  x ) )  e.  A )  ->  E. y ( z  <Q 
y  /\  -.  ( *Q `  y )  e.  A ) )
1810, 17syl6bir 220 . . . . . . . . . . . . 13  |-  ( x  e.  Q.  ->  (
( z  <Q  ( *Q `  x )  /\  -.  x  e.  A
)  ->  E. y
( z  <Q  y  /\  -.  ( *Q `  y )  e.  A
) ) )
19 vex 2804 . . . . . . . . . . . . . 14  |-  z  e. 
_V
20 breq1 4042 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  (
x  <Q  y  <->  z  <Q  y ) )
2120anbi1d 685 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  (
( x  <Q  y  /\  -.  ( *Q `  y )  e.  A
)  <->  ( z  <Q 
y  /\  -.  ( *Q `  y )  e.  A ) ) )
2221exbidv 1616 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  ( E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A )  <->  E. y
( z  <Q  y  /\  -.  ( *Q `  y )  e.  A
) ) )
23 reclempr.1 . . . . . . . . . . . . . 14  |-  B  =  { x  |  E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A ) }
2419, 22, 23elab2 2930 . . . . . . . . . . . . 13  |-  ( z  e.  B  <->  E. y
( z  <Q  y  /\  -.  ( *Q `  y )  e.  A
) )
2518, 24syl6ibr 218 . . . . . . . . . . . 12  |-  ( x  e.  Q.  ->  (
( z  <Q  ( *Q `  x )  /\  -.  x  e.  A
)  ->  z  e.  B ) )
2625exp3acom23 1362 . . . . . . . . . . 11  |-  ( x  e.  Q.  ->  ( -.  x  e.  A  ->  ( z  <Q  ( *Q `  x )  -> 
z  e.  B ) ) )
2726imp 418 . . . . . . . . . 10  |-  ( ( x  e.  Q.  /\  -.  x  e.  A
)  ->  ( z  <Q  ( *Q `  x
)  ->  z  e.  B ) )
2827eximdv 1612 . . . . . . . . 9  |-  ( ( x  e.  Q.  /\  -.  x  e.  A
)  ->  ( E. z  z  <Q  ( *Q
`  x )  ->  E. z  z  e.  B ) )
296, 28mpd 14 . . . . . . . 8  |-  ( ( x  e.  Q.  /\  -.  x  e.  A
)  ->  E. z 
z  e.  B )
30 n0 3477 . . . . . . . 8  |-  ( B  =/=  (/)  <->  E. z  z  e.  B )
3129, 30sylibr 203 . . . . . . 7  |-  ( ( x  e.  Q.  /\  -.  x  e.  A
)  ->  B  =/=  (/) )
3231exlimiv 1624 . . . . . 6  |-  ( E. x ( x  e. 
Q.  /\  -.  x  e.  A )  ->  B  =/=  (/) )
331, 2, 323syl 18 . . . . 5  |-  ( A  e.  P.  ->  B  =/=  (/) )
34 0pss 3505 . . . . 5  |-  ( (/)  C.  B  <->  B  =/=  (/) )
3533, 34sylibr 203 . . . 4  |-  ( A  e.  P.  ->  (/)  C.  B
)
36 prn0 8629 . . . . . . 7  |-  ( A  e.  P.  ->  A  =/=  (/) )
37 elprnq 8631 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  z  e.  Q. )
38 recrecnq 8607 . . . . . . . . . . . . . . . 16  |-  ( z  e.  Q.  ->  ( *Q `  ( *Q `  z ) )  =  z )
3938eleq1d 2362 . . . . . . . . . . . . . . 15  |-  ( z  e.  Q.  ->  (
( *Q `  ( *Q `  z ) )  e.  A  <->  z  e.  A ) )
4039anbi2d 684 . . . . . . . . . . . . . 14  |-  ( z  e.  Q.  ->  (
( A  e.  P.  /\  ( *Q `  ( *Q `  z ) )  e.  A )  <->  ( A  e.  P.  /\  z  e.  A ) ) )
4137, 40syl 15 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( ( A  e. 
P.  /\  ( *Q `  ( *Q `  z
) )  e.  A
)  <->  ( A  e. 
P.  /\  z  e.  A ) ) )
42 fvex 5555 . . . . . . . . . . . . . 14  |-  ( *Q
`  z )  e. 
_V
43 fveq2 5541 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( *Q `  z )  ->  ( *Q `  x )  =  ( *Q `  ( *Q `  z ) ) )
4443eleq1d 2362 . . . . . . . . . . . . . . 15  |-  ( x  =  ( *Q `  z )  ->  (
( *Q `  x
)  e.  A  <->  ( *Q `  ( *Q `  z
) )  e.  A
) )
4544anbi2d 684 . . . . . . . . . . . . . 14  |-  ( x  =  ( *Q `  z )  ->  (
( A  e.  P.  /\  ( *Q `  x
)  e.  A )  <-> 
( A  e.  P.  /\  ( *Q `  ( *Q `  z ) )  e.  A ) ) )
4642, 45spcev 2888 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  ( *Q `  ( *Q
`  z ) )  e.  A )  ->  E. x ( A  e. 
P.  /\  ( *Q `  x )  e.  A
) )
4741, 46syl6bir 220 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( ( A  e. 
P.  /\  z  e.  A )  ->  E. x
( A  e.  P.  /\  ( *Q `  x
)  e.  A ) ) )
4847pm2.43i 43 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  E. x ( A  e.  P.  /\  ( *Q `  x )  e.  A ) )
49 elprnq 8631 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  ( *Q `  x )  e.  A )  -> 
( *Q `  x
)  e.  Q. )
50 dmrecnq 8608 . . . . . . . . . . . . . . 15  |-  dom  *Q  =  Q.
51 0nnq 8564 . . . . . . . . . . . . . . 15  |-  -.  (/)  e.  Q.
5250, 51ndmfvrcl 5569 . . . . . . . . . . . . . 14  |-  ( ( *Q `  x )  e.  Q.  ->  x  e.  Q. )
5349, 52syl 15 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  ( *Q `  x )  e.  A )  ->  x  e.  Q. )
54 ltrnq 8619 . . . . . . . . . . . . . . . 16  |-  ( x 
<Q  y  <->  ( *Q `  y )  <Q  ( *Q `  x ) )
55 prcdnq 8633 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  ( *Q `  x )  e.  A )  -> 
( ( *Q `  y )  <Q  ( *Q `  x )  -> 
( *Q `  y
)  e.  A ) )
5654, 55syl5bi 208 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  ( *Q `  x )  e.  A )  -> 
( x  <Q  y  ->  ( *Q `  y
)  e.  A ) )
5756alrimiv 1621 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  ( *Q `  x )  e.  A )  ->  A. y ( x  <Q  y  ->  ( *Q `  y )  e.  A
) )
5823abeq2i 2403 . . . . . . . . . . . . . . . 16  |-  ( x  e.  B  <->  E. y
( x  <Q  y  /\  -.  ( *Q `  y )  e.  A
) )
59 exanali 1575 . . . . . . . . . . . . . . . 16  |-  ( E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A )  <->  -.  A. y
( x  <Q  y  ->  ( *Q `  y
)  e.  A ) )
6058, 59bitri 240 . . . . . . . . . . . . . . 15  |-  ( x  e.  B  <->  -.  A. y
( x  <Q  y  ->  ( *Q `  y
)  e.  A ) )
6160con2bii 322 . . . . . . . . . . . . . 14  |-  ( A. y ( x  <Q  y  ->  ( *Q `  y )  e.  A
)  <->  -.  x  e.  B )
6257, 61sylib 188 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  ( *Q `  x )  e.  A )  ->  -.  x  e.  B
)
6353, 62jca 518 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  ( *Q `  x )  e.  A )  -> 
( x  e.  Q.  /\ 
-.  x  e.  B
) )
6463eximi 1566 . . . . . . . . . . 11  |-  ( E. x ( A  e. 
P.  /\  ( *Q `  x )  e.  A
)  ->  E. x
( x  e.  Q.  /\ 
-.  x  e.  B
) )
6548, 64syl 15 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  E. x ( x  e.  Q.  /\  -.  x  e.  B )
)
6665ex 423 . . . . . . . . 9  |-  ( A  e.  P.  ->  (
z  e.  A  ->  E. x ( x  e. 
Q.  /\  -.  x  e.  B ) ) )
6766exlimdv 1626 . . . . . . . 8  |-  ( A  e.  P.  ->  ( E. z  z  e.  A  ->  E. x ( x  e.  Q.  /\  -.  x  e.  B )
) )
68 n0 3477 . . . . . . . 8  |-  ( A  =/=  (/)  <->  E. z  z  e.  A )
69 nss 3249 . . . . . . . 8  |-  ( -. 
Q.  C_  B  <->  E. x
( x  e.  Q.  /\ 
-.  x  e.  B
) )
7067, 68, 693imtr4g 261 . . . . . . 7  |-  ( A  e.  P.  ->  ( A  =/=  (/)  ->  -.  Q.  C_  B ) )
7136, 70mpd 14 . . . . . 6  |-  ( A  e.  P.  ->  -.  Q.  C_  B )
72 ltrelnq 8566 . . . . . . . . . . . 12  |-  <Q  C_  ( Q.  X.  Q. )
7372brel 4753 . . . . . . . . . . 11  |-  ( x 
<Q  y  ->  ( x  e.  Q.  /\  y  e.  Q. ) )
7473simpld 445 . . . . . . . . . 10  |-  ( x 
<Q  y  ->  x  e. 
Q. )
7574adantr 451 . . . . . . . . 9  |-  ( ( x  <Q  y  /\  -.  ( *Q `  y
)  e.  A )  ->  x  e.  Q. )
7675exlimiv 1624 . . . . . . . 8  |-  ( E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A )  ->  x  e.  Q. )
7758, 76sylbi 187 . . . . . . 7  |-  ( x  e.  B  ->  x  e.  Q. )
7877ssriv 3197 . . . . . 6  |-  B  C_  Q.
7971, 78jctil 523 . . . . 5  |-  ( A  e.  P.  ->  ( B  C_  Q.  /\  -.  Q.  C_  B ) )
80 dfpss3 3275 . . . . 5  |-  ( B 
C.  Q.  <->  ( B  C_  Q.  /\  -.  Q.  C_  B ) )
8179, 80sylibr 203 . . . 4  |-  ( A  e.  P.  ->  B  C.  Q. )
8235, 81jca 518 . . 3  |-  ( A  e.  P.  ->  ( (/)  C.  B  /\  B  C.  Q. ) )
83 ltsonq 8609 . . . . . . . . . . . 12  |-  <Q  Or  Q.
8483, 72sotri 5086 . . . . . . . . . . 11  |-  ( ( z  <Q  x  /\  x  <Q  y )  -> 
z  <Q  y )
8584ex 423 . . . . . . . . . 10  |-  ( z 
<Q  x  ->  ( x 
<Q  y  ->  z  <Q 
y ) )
8685anim1d 547 . . . . . . . . 9  |-  ( z 
<Q  x  ->  ( ( x  <Q  y  /\  -.  ( *Q `  y
)  e.  A )  ->  ( z  <Q 
y  /\  -.  ( *Q `  y )  e.  A ) ) )
8786eximdv 1612 . . . . . . . 8  |-  ( z 
<Q  x  ->  ( E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A )  ->  E. y
( z  <Q  y  /\  -.  ( *Q `  y )  e.  A
) ) )
8887, 58, 243imtr4g 261 . . . . . . 7  |-  ( z 
<Q  x  ->  ( x  e.  B  ->  z  e.  B ) )
8988com12 27 . . . . . 6  |-  ( x  e.  B  ->  (
z  <Q  x  ->  z  e.  B ) )
9089alrimiv 1621 . . . . 5  |-  ( x  e.  B  ->  A. z
( z  <Q  x  ->  z  e.  B ) )
91 nfe1 1718 . . . . . . . . . 10  |-  F/ y E. y ( x 
<Q  y  /\  -.  ( *Q `  y )  e.  A )
9291nfab 2436 . . . . . . . . 9  |-  F/_ y { x  |  E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A ) }
9323, 92nfcxfr 2429 . . . . . . . 8  |-  F/_ y B
94 nfv 1609 . . . . . . . 8  |-  F/ y  x  <Q  z
9593, 94nfrex 2611 . . . . . . 7  |-  F/ y E. z  e.  B  x  <Q  z
96 19.8a 1730 . . . . . . . . . . . . . 14  |-  ( ( z  <Q  y  /\  -.  ( *Q `  y
)  e.  A )  ->  E. y ( z 
<Q  y  /\  -.  ( *Q `  y )  e.  A ) )
9796, 24sylibr 203 . . . . . . . . . . . . 13  |-  ( ( z  <Q  y  /\  -.  ( *Q `  y
)  e.  A )  ->  z  e.  B
)
9897adantll 694 . . . . . . . . . . . 12  |-  ( ( ( x  <Q  z  /\  z  <Q  y )  /\  -.  ( *Q
`  y )  e.  A )  ->  z  e.  B )
99 simpll 730 . . . . . . . . . . . 12  |-  ( ( ( x  <Q  z  /\  z  <Q  y )  /\  -.  ( *Q
`  y )  e.  A )  ->  x  <Q  z )
10098, 99jca 518 . . . . . . . . . . 11  |-  ( ( ( x  <Q  z  /\  z  <Q  y )  /\  -.  ( *Q
`  y )  e.  A )  ->  (
z  e.  B  /\  x  <Q  z ) )
101100expcom 424 . . . . . . . . . 10  |-  ( -.  ( *Q `  y
)  e.  A  -> 
( ( x  <Q  z  /\  z  <Q  y
)  ->  ( z  e.  B  /\  x  <Q  z ) ) )
102101eximdv 1612 . . . . . . . . 9  |-  ( -.  ( *Q `  y
)  e.  A  -> 
( E. z ( x  <Q  z  /\  z  <Q  y )  ->  E. z ( z  e.  B  /\  x  <Q  z ) ) )
103 ltbtwnnq 8618 . . . . . . . . 9  |-  ( x 
<Q  y  <->  E. z ( x 
<Q  z  /\  z  <Q  y ) )
104 df-rex 2562 . . . . . . . . 9  |-  ( E. z  e.  B  x 
<Q  z  <->  E. z ( z  e.  B  /\  x  <Q  z ) )
105102, 103, 1043imtr4g 261 . . . . . . . 8  |-  ( -.  ( *Q `  y
)  e.  A  -> 
( x  <Q  y  ->  E. z  e.  B  x  <Q  z ) )
106105impcom 419 . . . . . . 7  |-  ( ( x  <Q  y  /\  -.  ( *Q `  y
)  e.  A )  ->  E. z  e.  B  x  <Q  z )
10795, 106exlimi 1813 . . . . . 6  |-  ( E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A )  ->  E. z  e.  B  x  <Q  z )
10858, 107sylbi 187 . . . . 5  |-  ( x  e.  B  ->  E. z  e.  B  x  <Q  z )
10990, 108jca 518 . . . 4  |-  ( x  e.  B  ->  ( A. z ( z  <Q  x  ->  z  e.  B
)  /\  E. z  e.  B  x  <Q  z ) )
110109rgen 2621 . . 3  |-  A. x  e.  B  ( A. z ( z  <Q  x  ->  z  e.  B
)  /\  E. z  e.  B  x  <Q  z )
11182, 110jctir 524 . 2  |-  ( A  e.  P.  ->  (
( (/)  C.  B  /\  B  C.  Q. )  /\  A. x  e.  B  ( A. z ( z 
<Q  x  ->  z  e.  B )  /\  E. z  e.  B  x  <Q  z ) ) )
112 elnp 8627 . 2  |-  ( B  e.  P.  <->  ( ( (/)  C.  B  /\  B  C.  Q. )  /\  A. x  e.  B  ( A. z ( z  <Q  x  ->  z  e.  B
)  /\  E. z  e.  B  x  <Q  z ) ) )
113111, 112sylibr 203 1  |-  ( A  e.  P.  ->  B  e.  P. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1530   E.wex 1531    = wceq 1632    e. wcel 1696   {cab 2282    =/= wne 2459   A.wral 2556   E.wrex 2557    C_ wss 3165    C. wpss 3166   (/)c0 3468   class class class wbr 4039   ` cfv 5271   Q.cnq 8490   *Qcrq 8495    <Q cltq 8496   P.cnp 8497
This theorem is referenced by:  reclem3pr  8689  reclem4pr  8690  recexpr  8691
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-omul 6500  df-er 6676  df-ni 8512  df-pli 8513  df-mi 8514  df-lti 8515  df-plpq 8548  df-mpq 8549  df-ltpq 8550  df-enq 8551  df-nq 8552  df-erq 8553  df-plq 8554  df-mq 8555  df-1nq 8556  df-rq 8557  df-ltnq 8558  df-np 8621
  Copyright terms: Public domain W3C validator