MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmnmhm Unicode version

Theorem reldmnmhm 18324
Description: Lemma for module homomorphisms. (Contributed by Mario Carneiro, 18-Oct-2015.)
Assertion
Ref Expression
reldmnmhm  |-  Rel  dom NMHom

Proof of Theorem reldmnmhm
Dummy variables  s 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nmhm 18321 . 2  |- NMHom  =  ( s  e. NrmMod ,  t  e. NrmMod  |->  ( ( s LMHom  t
)  i^i  ( s NGHom  t ) ) )
21reldmmpt2 6042 1  |-  Rel  dom NMHom
Colors of variables: wff set class
Syntax hints:    i^i cin 3227   dom cdm 4771   Rel wrel 4776  (class class class)co 5945   LMHom clmhm 15875  NrmModcnlm 18205   NGHom cnghm 18317   NMHom cnmhm 18318
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pr 4295
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-br 4105  df-opab 4159  df-xp 4777  df-rel 4778  df-dm 4781  df-oprab 5949  df-mpt2 5950  df-nmhm 18321
  Copyright terms: Public domain W3C validator