Users' Mathboxes Mathbox for Drahflow < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpsucr Structured version   Unicode version

Theorem relexpsucr 25135
Description: A reduction for relation exponentiation to the right. (Contributed by Drahflow, 12-Nov-2015.)
Hypotheses
Ref Expression
relexpsucr.1  |-  ( ph  ->  Rel  R )
relexpsucr.2  |-  ( ph  ->  R  e.  _V )
Assertion
Ref Expression
relexpsucr  |-  ( ph  ->  ( N  e.  NN0  ->  ( R ^ r ( N  +  1 ) )  =  ( ( R ^ r N )  o.  R
) ) )

Proof of Theorem relexpsucr
Dummy variables  r  n  x  y  z 
b  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relexpsucr.2 . . 3  |-  ( ph  ->  R  e.  _V )
2 uniexg 4709 . . 3  |-  ( R  e.  _V  ->  U. R  e.  _V )
3 uniexg 4709 . . 3  |-  ( U. R  e.  _V  ->  U.
U. R  e.  _V )
4 resiexg 5191 . . 3  |-  ( U. U. R  e.  _V  ->  (  _I  |`  U. U. R
)  e.  _V )
51, 2, 3, 44syl 20 . 2  |-  ( ph  ->  (  _I  |`  U. U. R )  e.  _V )
6 eqidd 2439 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( r  e.  _V ,  n  e.  NN0  |->  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `  n
) )  =  ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) )
7 simprr 735 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( r  =  R  /\  n  =  ( N  +  1 ) ) )  ->  n  =  ( N  + 
1 ) )
8 eqidd 2439 . . . . . . . . . . 11  |-  ( r  =  R  ->  0  =  0 )
9 eqidd 2439 . . . . . . . . . . . 12  |-  ( r  =  R  ->  _V  =  _V )
10 coeq2 5034 . . . . . . . . . . . 12  |-  ( r  =  R  ->  (
x  o.  r )  =  ( x  o.  R ) )
119, 9, 10mpt2eq123dv 6139 . . . . . . . . . . 11  |-  ( r  =  R  ->  (
x  e.  _V , 
y  e.  _V  |->  ( x  o.  r ) )  =  ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) )
12 unieq 4026 . . . . . . . . . . . . . 14  |-  ( r  =  R  ->  U. r  =  U. R )
1312unieqd 4028 . . . . . . . . . . . . 13  |-  ( r  =  R  ->  U. U. r  =  U. U. R
)
1413reseq2d 5149 . . . . . . . . . . . 12  |-  ( r  =  R  ->  (  _I  |`  U. U. r
)  =  (  _I  |`  U. U. R ) )
1514mpteq2dv 4299 . . . . . . . . . . 11  |-  ( r  =  R  ->  (
z  e.  _V  |->  (  _I  |`  U. U. r
) )  =  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) )
168, 11, 15seqeq123d 11337 . . . . . . . . . 10  |-  ( r  =  R  ->  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) )  =  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) )
1716fveq1d 5733 . . . . . . . . 9  |-  ( r  =  R  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 ( N  + 
1 ) )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  ( N  +  1
) ) )
1817ad2antrl 710 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( r  =  R  /\  ( N  + 
1 )  =  ( N  +  1 ) ) )  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 ( N  + 
1 ) )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  ( N  +  1
) ) )
19 eqeq1 2444 . . . . . . . . . . 11  |-  ( n  =  ( N  + 
1 )  ->  (
n  =  ( N  +  1 )  <->  ( N  +  1 )  =  ( N  +  1 ) ) )
2019anbi2d 686 . . . . . . . . . 10  |-  ( n  =  ( N  + 
1 )  ->  (
( r  =  R  /\  n  =  ( N  +  1 ) )  <->  ( r  =  R  /\  ( N  +  1 )  =  ( N  +  1 ) ) ) )
2120anbi2d 686 . . . . . . . . 9  |-  ( n  =  ( N  + 
1 )  ->  (
( ( N  e. 
NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) )  /\  (
r  =  R  /\  n  =  ( N  +  1 ) ) )  <->  ( ( N  e.  NN0  /\  (
(  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( r  =  R  /\  ( N  + 
1 )  =  ( N  +  1 ) ) ) ) )
22 fveq2 5731 . . . . . . . . . 10  |-  ( n  =  ( N  + 
1 )  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r
) ) ) `  ( N  +  1
) ) )
2322eqeq1d 2446 . . . . . . . . 9  |-  ( n  =  ( N  + 
1 )  ->  (
(  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r
) ) ) `  n )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  ( N  +  1 ) )  <->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 ( N  + 
1 ) )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  ( N  +  1
) ) ) )
2421, 23imbi12d 313 . . . . . . . 8  |-  ( n  =  ( N  + 
1 )  ->  (
( ( ( N  e.  NN0  /\  (
(  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( r  =  R  /\  n  =  ( N  +  1 ) ) )  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  ( N  +  1
) ) )  <->  ( (
( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( r  =  R  /\  ( N  + 
1 )  =  ( N  +  1 ) ) )  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 ( N  + 
1 ) )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  ( N  +  1
) ) ) ) )
2518, 24mpbiri 226 . . . . . . 7  |-  ( n  =  ( N  + 
1 )  ->  (
( ( N  e. 
NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) )  /\  (
r  =  R  /\  n  =  ( N  +  1 ) ) )  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  ( N  +  1
) ) ) )
267, 25mpcom 35 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( r  =  R  /\  n  =  ( N  +  1 ) ) )  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  ( N  +  1
) ) )
271ad2antll 711 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  ->  R  e.  _V )
28 simpl 445 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  ->  N  e.  NN0 )
29 1nn0 10242 . . . . . . . 8  |-  1  e.  NN0
3029a1i 11 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
1  e.  NN0 )
31 nn0addcl 10260 . . . . . . 7  |-  ( ( N  e.  NN0  /\  1  e.  NN0 )  -> 
( N  +  1 )  e.  NN0 )
3228, 30, 31syl2anc 644 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( N  +  1 )  e.  NN0 )
33 fvex 5745 . . . . . . 7  |-  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) ) `
 ( N  + 
1 ) )  e. 
_V
3433a1i 11 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
(  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  ( N  +  1
) )  e.  _V )
356, 26, 27, 32, 34ovmpt2d 6204 . . . . 5  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) ( N  +  1 ) )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  ( N  +  1 ) ) )
36 simprl 734 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( r  =  R  /\  n  =  N ) )  ->  r  =  R )
37 fveq2 5731 . . . . . . . . . 10  |-  ( n  =  N  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N ) )
3837ad2antll 711 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( R  =  R  /\  n  =  N
) )  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N ) )
39 eqeq1 2444 . . . . . . . . . . . 12  |-  ( r  =  R  ->  (
r  =  R  <->  R  =  R ) )
4039anbi1d 687 . . . . . . . . . . 11  |-  ( r  =  R  ->  (
( r  =  R  /\  n  =  N )  <->  ( R  =  R  /\  n  =  N ) ) )
4140anbi2d 686 . . . . . . . . . 10  |-  ( r  =  R  ->  (
( ( N  e. 
NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) )  /\  (
r  =  R  /\  n  =  N )
)  <->  ( ( N  e.  NN0  /\  (
(  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( R  =  R  /\  n  =  N
) ) ) )
4216fveq1d 5733 . . . . . . . . . . 11  |-  ( r  =  R  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  n ) )
4342eqeq1d 2446 . . . . . . . . . 10  |-  ( r  =  R  ->  (
(  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r
) ) ) `  n )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  <->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N ) ) )
4441, 43imbi12d 313 . . . . . . . . 9  |-  ( r  =  R  ->  (
( ( ( N  e.  NN0  /\  (
(  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( r  =  R  /\  n  =  N ) )  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N ) )  <->  ( (
( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( R  =  R  /\  n  =  N
) )  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N ) ) ) )
4538, 44mpbiri 226 . . . . . . . 8  |-  ( r  =  R  ->  (
( ( N  e. 
NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) )  /\  (
r  =  R  /\  n  =  N )
)  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N ) ) )
4636, 45mpcom 35 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( r  =  R  /\  n  =  N ) )  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N ) )
47 fvex 5745 . . . . . . . 8  |-  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) ) `
 N )  e. 
_V
4847a1i 11 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
(  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N )  e.  _V )
496, 46, 27, 28, 48ovmpt2d 6204 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
) )
50 simprl 734 . . . . . . . . 9  |-  ( ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  ->  N  e.  NN0 )
51 nn0uz 10525 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
5250, 51syl6eleq 2528 . . . . . . . 8  |-  ( ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  ->  N  e.  ( ZZ>= ` 
0 ) )
53 seqp1 11343 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  0
)  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) ) `
 ( N  + 
1 ) )  =  ( (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 N ) ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ( ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) `  ( N  +  1 ) ) ) )
5452, 53syl 16 . . . . . . 7  |-  ( ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  -> 
(  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  ( N  +  1
) )  =  ( (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N ) ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ( ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) `  ( N  +  1
) ) ) )
55 eqidd 2439 . . . . . . . . . . 11  |-  ( z  =  b  ->  (  _I  |`  U. U. R
)  =  (  _I  |`  U. U. R ) )
5655cbvmptv 4303 . . . . . . . . . 10  |-  ( z  e.  _V  |->  (  _I  |`  U. U. R ) )  =  ( b  e.  _V  |->  (  _I  |`  U. U. R ) )
5756a1i 11 . . . . . . . . 9  |-  ( ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  -> 
( z  e.  _V  |->  (  _I  |`  U. U. R ) )  =  ( b  e.  _V  |->  (  _I  |`  U. U. R ) ) )
58 eqidd 2439 . . . . . . . . 9  |-  ( ( ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  /\  b  =  ( N  +  1 ) )  ->  (  _I  |`  U. U. R )  =  (  _I  |`  U. U. R
) )
5950, 29jctir 526 . . . . . . . . . 10  |-  ( ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  -> 
( N  e.  NN0  /\  1  e.  NN0 )
)
60 elex 2966 . . . . . . . . . 10  |-  ( ( N  +  1 )  e.  NN0  ->  ( N  +  1 )  e. 
_V )
6159, 31, 603syl 19 . . . . . . . . 9  |-  ( ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  -> 
( N  +  1 )  e.  _V )
62 simpl 445 . . . . . . . . . 10  |-  ( ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph )  ->  (  _I  |`  U. U. R
)  e.  _V )
6362ad2antll 711 . . . . . . . . 9  |-  ( ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  -> 
(  _I  |`  U. U. R )  e.  _V )
6457, 58, 61, 63fvmptd 5813 . . . . . . . 8  |-  ( ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  -> 
( ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) `  ( N  +  1
) )  =  (  _I  |`  U. U. R
) )
65 nfcv 2574 . . . . . . . . . . . . . 14  |-  F/_ s
( x  o.  R
)
66 nfcv 2574 . . . . . . . . . . . . . 14  |-  F/_ t
( x  o.  R
)
67 nfcv 2574 . . . . . . . . . . . . . 14  |-  F/_ x
( s  o.  R
)
68 nfcv 2574 . . . . . . . . . . . . . 14  |-  F/_ y
( s  o.  R
)
69 coeq1 5033 . . . . . . . . . . . . . . 15  |-  ( x  =  s  ->  (
x  o.  R )  =  ( s  o.  R ) )
7069adantr 453 . . . . . . . . . . . . . 14  |-  ( ( x  =  s  /\  y  =  t )  ->  ( x  o.  R
)  =  ( s  o.  R ) )
7165, 66, 67, 68, 70cbvmpt2 6154 . . . . . . . . . . . . 13  |-  ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) )  =  ( s  e. 
_V ,  t  e. 
_V  |->  ( s  o.  R ) )
7271a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) )  =  ( s  e.  _V , 
t  e.  _V  |->  ( s  o.  R ) ) )
73 coeq1 5033 . . . . . . . . . . . . 13  |-  ( s  =  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 N )  -> 
( s  o.  R
)  =  ( (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  o.  R ) )
7473ad2antrl 710 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( s  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  t  =  (  _I  |`  U. U. R ) ) )  ->  ( s  o.  R )  =  ( (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N )  o.  R
) )
75 simprl 734 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
(  _I  |`  U. U. R )  e.  _V )
76 coexg 5415 . . . . . . . . . . . . 13  |-  ( ( (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N )  e.  _V  /\  R  e.  _V )  ->  ( (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 N )  o.  R )  e.  _V )
7748, 27, 76syl2anc 644 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 N )  o.  R )  e.  _V )
7872, 74, 48, 75, 77ovmpt2d 6204 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 N ) ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) (  _I  |`  U. U. R ) )  =  ( (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 N )  o.  R ) )
79 coeq1 5033 . . . . . . . . . . . 12  |-  ( ( R ( r  e. 
_V ,  n  e. 
NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  ->  ( ( R ( r  e. 
_V ,  n  e. 
NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
)  =  ( (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  o.  R ) )
8079eqeq2d 2449 . . . . . . . . . . 11  |-  ( ( R ( r  e. 
_V ,  n  e. 
NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  ->  ( (
(  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N ) ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) (  _I  |`  U. U. R ) )  =  ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
)  <->  ( (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) ) `
 N ) ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) (  _I  |`  U. U. R ) )  =  ( (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 N )  o.  R ) ) )
8178, 80syl5ibr 214 . . . . . . . . . 10  |-  ( ( R ( r  e. 
_V ,  n  e. 
NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  ->  ( ( N  e.  NN0  /\  (
(  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 N ) ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) (  _I  |`  U. U. R ) )  =  ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
) ) )
8281imp 420 . . . . . . . . 9  |-  ( ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  -> 
( (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 N ) ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) (  _I  |`  U. U. R ) )  =  ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
) )
83 oveq2 6092 . . . . . . . . . 10  |-  ( ( ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) `  ( N  +  1
) )  =  (  _I  |`  U. U. R
)  ->  ( (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) ) `
 N ) ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ( ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) `  ( N  +  1 ) ) )  =  ( (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
) ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) (  _I  |`  U. U. R
) ) )
8483eqeq1d 2446 . . . . . . . . 9  |-  ( ( ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) `  ( N  +  1
) )  =  (  _I  |`  U. U. R
)  ->  ( (
(  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N ) ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ( ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) `  ( N  +  1
) ) )  =  ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
)  <->  ( (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) ) `
 N ) ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) (  _I  |`  U. U. R ) )  =  ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
) ) )
8582, 84syl5ibr 214 . . . . . . . 8  |-  ( ( ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) `  ( N  +  1
) )  =  (  _I  |`  U. U. R
)  ->  ( (
( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  -> 
( (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 N ) ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ( ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) `  ( N  +  1 ) ) )  =  ( ( R ( r  e. 
_V ,  n  e. 
NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
) ) )
8664, 85mpcom 35 . . . . . . 7  |-  ( ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  -> 
( (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 N ) ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ( ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) `  ( N  +  1 ) ) )  =  ( ( R ( r  e. 
_V ,  n  e. 
NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
) )
8754, 86eqtrd 2470 . . . . . 6  |-  ( ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  -> 
(  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  ( N  +  1
) )  =  ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
) )
8849, 87mpancom 652 . . . . 5  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
(  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  ( N  +  1
) )  =  ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
) )
8935, 88eqtrd 2470 . . . 4  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) ( N  +  1 ) )  =  ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
) )
90 df-relexp 25133 . . . . 5  |-  ^ r  =  ( r  e. 
_V ,  n  e. 
NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) )
91 oveq 6090 . . . . . . 7  |-  ( ^
r  =  ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) )  ->  ( R ^
r ( N  + 
1 ) )  =  ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) ( N  +  1 ) ) )
92 oveq 6090 . . . . . . . 8  |-  ( ^
r  =  ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) )  ->  ( R ^
r N )  =  ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N ) )
9392coeq1d 5037 . . . . . . 7  |-  ( ^
r  =  ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) )  ->  ( ( R ^ r N )  o.  R )  =  ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
) )
9491, 93eqeq12d 2452 . . . . . 6  |-  ( ^
r  =  ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) )  ->  ( ( R ^ r ( N  +  1 ) )  =  ( ( R ^ r N )  o.  R )  <->  ( R
( r  e.  _V ,  n  e.  NN0  |->  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `  n
) ) ( N  +  1 ) )  =  ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `  n
) ) N )  o.  R ) ) )
9594imbi2d 309 . . . . 5  |-  ( ^
r  =  ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) )  ->  ( ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( R ^ r ( N  +  1 ) )  =  ( ( R ^ r N )  o.  R
) )  <->  ( ( N  e.  NN0  /\  (
(  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) ( N  +  1 ) )  =  ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
) ) ) )
9690, 95ax-mp 5 . . . 4  |-  ( ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( R ^ r ( N  +  1 ) )  =  ( ( R ^ r N )  o.  R
) )  <->  ( ( N  e.  NN0  /\  (
(  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) ( N  +  1 ) )  =  ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
) ) )
9789, 96mpbir 202 . . 3  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( R ^ r ( N  +  1 ) )  =  ( ( R ^ r N )  o.  R
) )
9897expcom 426 . 2  |-  ( ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph )  ->  ( N  e.  NN0  ->  ( R ^ r ( N  +  1 ) )  =  ( ( R ^ r N )  o.  R ) ) )
995, 98mpancom 652 1  |-  ( ph  ->  ( N  e.  NN0  ->  ( R ^ r ( N  +  1 ) )  =  ( ( R ^ r N )  o.  R
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   _Vcvv 2958   U.cuni 4017    e. cmpt 4269    _I cid 4496    |` cres 4883    o. ccom 4885   Rel wrel 4886   ` cfv 5457  (class class class)co 6084    e. cmpt2 6086   0cc0 8995   1c1 8996    + caddc 8998   NN0cn0 10226   ZZ>=cuz 10493    seq cseq 11328   ^ rcrelexp 25132
This theorem is referenced by:  relexp1  25136  relexpsucl  25137  relexpcnv  25138  relexprn  25141  relexpadd  25143  rtrclreclem.min  25152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-n0 10227  df-z 10288  df-uz 10494  df-seq 11329  df-relexp 25133
  Copyright terms: Public domain W3C validator