MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relssdmrn Unicode version

Theorem relssdmrn 5193
Description: A relation is included in the cross product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
relssdmrn  |-  ( Rel 
A  ->  A  C_  ( dom  A  X.  ran  A
) )

Proof of Theorem relssdmrn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2  |-  ( Rel 
A  ->  Rel  A )
2 19.8a 1718 . . . 4  |-  ( <.
x ,  y >.  e.  A  ->  E. y <. x ,  y >.  e.  A )
3 19.8a 1718 . . . 4  |-  ( <.
x ,  y >.  e.  A  ->  E. x <. x ,  y >.  e.  A )
4 opelxp 4719 . . . . 5  |-  ( <.
x ,  y >.  e.  ( dom  A  X.  ran  A )  <->  ( x  e.  dom  A  /\  y  e.  ran  A ) )
5 vex 2791 . . . . . . 7  |-  x  e. 
_V
65eldm2 4877 . . . . . 6  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
7 vex 2791 . . . . . . 7  |-  y  e. 
_V
87elrn2 4918 . . . . . 6  |-  ( y  e.  ran  A  <->  E. x <. x ,  y >.  e.  A )
96, 8anbi12i 678 . . . . 5  |-  ( ( x  e.  dom  A  /\  y  e.  ran  A )  <->  ( E. y <. x ,  y >.  e.  A  /\  E. x <. x ,  y >.  e.  A ) )
104, 9bitri 240 . . . 4  |-  ( <.
x ,  y >.  e.  ( dom  A  X.  ran  A )  <->  ( E. y <. x ,  y
>.  e.  A  /\  E. x <. x ,  y
>.  e.  A ) )
112, 3, 10sylanbrc 645 . . 3  |-  ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  ( dom  A  X.  ran  A ) )
1211a1i 10 . 2  |-  ( Rel 
A  ->  ( <. x ,  y >.  e.  A  -> 
<. x ,  y >.  e.  ( dom  A  X.  ran  A ) ) )
131, 12relssdv 4779 1  |-  ( Rel 
A  ->  A  C_  ( dom  A  X.  ran  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1528    e. wcel 1684    C_ wss 3152   <.cop 3643    X. cxp 4687   dom cdm 4689   ran crn 4690   Rel wrel 4694
This theorem is referenced by:  cnvssrndm  5194  cossxp  5195  relrelss  5196  relfld  5198  cnvexg  5208  coexg  5215  fssxp  5400  resfunexgALT  5738  cofunexg  5739  fnexALT  5742  oprabss  5933  erssxp  6683  wunco  8355  imasless  13442  sylow2a  14930  gsum2d  15223  znleval  16508  tsmsxp  17837  oprabex2gpop  25036  relinccppr  25129  prismorcsetlem  25912  prismorcset  25914  prismorcsetlemc  25917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697  df-dm 4699  df-rn 4700
  Copyright terms: Public domain W3C validator