MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relssdmrn Unicode version

Theorem relssdmrn 5145
Description: A relation is included in the cross product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
relssdmrn  |-  ( Rel 
A  ->  A  C_  ( dom  A  X.  ran  A
) )

Proof of Theorem relssdmrn
StepHypRef Expression
1 id 21 . 2  |-  ( Rel 
A  ->  Rel  A )
2 19.8a 1758 . . . 4  |-  ( <.
x ,  y >.  e.  A  ->  E. y <. x ,  y >.  e.  A )
3 19.8a 1758 . . . 4  |-  ( <.
x ,  y >.  e.  A  ->  E. x <. x ,  y >.  e.  A )
4 opelxp 4672 . . . . 5  |-  ( <.
x ,  y >.  e.  ( dom  A  X.  ran  A )  <->  ( x  e.  dom  A  /\  y  e.  ran  A ) )
5 vex 2743 . . . . . . 7  |-  x  e. 
_V
65eldm2 4830 . . . . . 6  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
7 vex 2743 . . . . . . 7  |-  y  e. 
_V
87elrn2 4871 . . . . . 6  |-  ( y  e.  ran  A  <->  E. x <. x ,  y >.  e.  A )
96, 8anbi12i 681 . . . . 5  |-  ( ( x  e.  dom  A  /\  y  e.  ran  A )  <->  ( E. y <. x ,  y >.  e.  A  /\  E. x <. x ,  y >.  e.  A ) )
104, 9bitri 242 . . . 4  |-  ( <.
x ,  y >.  e.  ( dom  A  X.  ran  A )  <->  ( E. y <. x ,  y
>.  e.  A  /\  E. x <. x ,  y
>.  e.  A ) )
112, 3, 10sylanbrc 648 . . 3  |-  ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  ( dom  A  X.  ran  A ) )
1211a1i 12 . 2  |-  ( Rel 
A  ->  ( <. x ,  y >.  e.  A  -> 
<. x ,  y >.  e.  ( dom  A  X.  ran  A ) ) )
131, 12relssdv 4732 1  |-  ( Rel 
A  ->  A  C_  ( dom  A  X.  ran  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360   E.wex 1537    e. wcel 1621    C_ wss 3094   <.cop 3584    X. cxp 4624   dom cdm 4626   ran crn 4627   Rel wrel 4631
This theorem is referenced by:  cnvssrndm  5146  cossxp  5147  relrelss  5148  relfld  5150  cnvexg  5160  coexg  5167  fssxp  5303  resfunexgALT  5637  cofunexg  5638  fnexALT  5641  oprabss  5832  erssxp  6616  wunco  8288  imasless  13369  sylow2a  14857  gsum2d  15150  znleval  16435  tsmsxp  17764  oprabex2gpop  24367  relinccppr  24461  prismorcsetlem  25244  prismorcset  25246  prismorcsetlemc  25249
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-op 3590  df-br 3964  df-opab 4018  df-xp 4640  df-rel 4641  df-cnv 4642  df-dm 4644  df-rn 4645
  Copyright terms: Public domain W3C validator