MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remullem Unicode version

Theorem remullem 11916
Description: Lemma for remul 11917, immul 11924, and cjmul 11930. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
remullem  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  x.  B
) )  =  ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) )  /\  ( Im `  ( A  x.  B
) )  =  ( ( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) )  /\  ( * `  ( A  x.  B
) )  =  ( ( * `  A
)  x.  ( * `
 B ) ) ) )

Proof of Theorem remullem
StepHypRef Expression
1 replim 11904 . . . . . 6  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
2 replim 11904 . . . . . 6  |-  ( B  e.  CC  ->  B  =  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) )
31, 2oveqan12d 6086 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  x.  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) ) )
4 recl 11898 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
54adantr 452 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  A
)  e.  RR )
65recnd 9098 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  A
)  e.  CC )
7 ax-icn 9033 . . . . . . . 8  |-  _i  e.  CC
8 imcl 11899 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
98adantr 452 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  A
)  e.  RR )
109recnd 9098 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  A
)  e.  CC )
11 mulcl 9058 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
127, 10, 11sylancr 645 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  A )
)  e.  CC )
136, 12addcld 9091 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) )  e.  CC )
14 recl 11898 . . . . . . . 8  |-  ( B  e.  CC  ->  (
Re `  B )  e.  RR )
1514adantl 453 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  B
)  e.  RR )
1615recnd 9098 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  B
)  e.  CC )
17 imcl 11899 . . . . . . . . 9  |-  ( B  e.  CC  ->  (
Im `  B )  e.  RR )
1817adantl 453 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  B
)  e.  RR )
1918recnd 9098 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  B
)  e.  CC )
20 mulcl 9058 . . . . . . 7  |-  ( ( _i  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( _i  x.  (
Im `  B )
)  e.  CC )
217, 19, 20sylancr 645 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  B )
)  e.  CC )
2213, 16, 21adddid 9096 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  x.  (
( Re `  B
)  +  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) )  x.  ( Re
`  B ) )  +  ( ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) )  x.  (
_i  x.  ( Im `  B ) ) ) ) )
236, 12, 16adddird 9097 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  x.  (
Re `  B )
)  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) ) ) )
246, 12, 21adddird 9097 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  x.  (
_i  x.  ( Im `  B ) ) )  =  ( ( ( Re `  A )  x.  ( _i  x.  ( Im `  B ) ) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) ) )
2523, 24oveq12d 6085 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) )  x.  (
Re `  B )
)  +  ( ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( Re
`  B ) ) )  +  ( ( ( Re `  A
)  x.  ( _i  x.  ( Im `  B ) ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) ) ) )
265, 15remulcld 9100 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Re `  B )
)  e.  RR )
2726recnd 9098 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Re `  B )
)  e.  CC )
2812, 21mulcld 9092 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) )  e.  CC )
2912, 16mulcld 9092 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( Re
`  B ) )  e.  CC )
306, 21mulcld 9092 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
_i  x.  ( Im `  B ) ) )  e.  CC )
3127, 28, 29, 30add42d 9274 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) ) )  +  ( ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) )  +  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) ) )  +  ( ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) ) ) )
327a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  _i  e.  CC )
3332, 10, 32, 19mul4d 9262 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) )  =  ( ( _i  x.  _i )  x.  ( ( Im `  A )  x.  (
Im `  B )
) ) )
34 ixi 9635 . . . . . . . . . . . 12  |-  ( _i  x.  _i )  = 
-u 1
3534oveq1i 6077 . . . . . . . . . . 11  |-  ( ( _i  x.  _i )  x.  ( ( Im
`  A )  x.  ( Im `  B
) ) )  =  ( -u 1  x.  ( ( Im `  A )  x.  (
Im `  B )
) )
369, 18remulcld 9100 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Im `  B )
)  e.  RR )
3736recnd 9098 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Im `  B )
)  e.  CC )
3837mulm1d 9469 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u 1  x.  ( ( Im `  A )  x.  (
Im `  B )
) )  =  -u ( ( Im `  A )  x.  (
Im `  B )
) )
3935, 38syl5eq 2474 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  _i )  x.  (
( Im `  A
)  x.  ( Im
`  B ) ) )  =  -u (
( Im `  A
)  x.  ( Im
`  B ) ) )
4033, 39eqtrd 2462 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) )  =  -u ( ( Im
`  A )  x.  ( Im `  B
) ) )
4140oveq2d 6083 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  -u ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
4227, 37negsubd 9401 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  +  -u ( ( Im `  A )  x.  (
Im `  B )
) )  =  ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) ) )
4341, 42eqtrd 2462 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
449, 15remulcld 9100 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Re `  B )
)  e.  RR )
4544recnd 9098 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Re `  B )
)  e.  CC )
46 mulcl 9058 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  ( ( Im `  A )  x.  (
Re `  B )
)  e.  CC )  ->  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) )  e.  CC )
477, 45, 46sylancr 645 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( Im `  A
)  x.  ( Re
`  B ) ) )  e.  CC )
485, 18remulcld 9100 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Im `  B )
)  e.  RR )
4948recnd 9098 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Im `  B )
)  e.  CC )
50 mulcl 9058 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  ( ( Re `  A )  x.  (
Im `  B )
)  e.  CC )  ->  ( _i  x.  ( ( Re `  A )  x.  (
Im `  B )
) )  e.  CC )
517, 49, 50sylancr 645 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( Re `  A
)  x.  ( Im
`  B ) ) )  e.  CC )
5247, 51addcomd 9252 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) )  +  ( _i  x.  ( ( Re `  A )  x.  ( Im `  B ) ) ) )  =  ( ( _i  x.  ( ( Re `  A )  x.  ( Im `  B ) ) )  +  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) ) ) )
5332, 10, 16mulassd 9095 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( Re
`  B ) )  =  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) ) )
546, 32, 19mul12d 9259 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
_i  x.  ( Im `  B ) ) )  =  ( _i  x.  ( ( Re `  A )  x.  (
Im `  B )
) ) )
5553, 54oveq12d 6085 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) )  +  ( ( Re `  A
)  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( _i  x.  ( ( Im `  A )  x.  ( Re `  B ) ) )  +  ( _i  x.  ( ( Re `  A )  x.  (
Im `  B )
) ) ) )
5632, 49, 45adddid 9096 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) )  =  ( ( _i  x.  ( ( Re `  A )  x.  ( Im `  B ) ) )  +  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) ) ) )
5752, 55, 563eqtr4d 2472 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) )  +  ( ( Re `  A
)  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( _i  x.  ( ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im `  A )  x.  (
Re `  B )
) ) ) )
5843, 57oveq12d 6085 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) ) )  +  ( ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) )  +  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) )  +  ( _i  x.  (
( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) ) ) )
5925, 31, 583eqtr2d 2468 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) )  x.  (
Re `  B )
)  +  ( ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Im `  A )  x.  (
Im `  B )
) )  +  ( _i  x.  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) ) ) )
603, 22, 593eqtrd 2466 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) )  +  ( _i  x.  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) ) ) ) )
6160fveq2d 5718 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( Re
`  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) )  +  ( _i  x.  (
( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) ) ) ) )
6226, 36resubcld 9449 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  e.  RR )
6348, 44readdcld 9099 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) )  e.  RR )
64 crre 11902 . . . 4  |-  ( ( ( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  e.  RR  /\  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) )  e.  RR )  ->  ( Re `  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Im `  A )  x.  (
Im `  B )
) )  +  ( _i  x.  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) ) ) )  =  ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) ) )
6562, 63, 64syl2anc 643 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  (
( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  +  ( _i  x.  ( ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im `  A )  x.  (
Re `  B )
) ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
6661, 65eqtrd 2462 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
6760fveq2d 5718 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  x.  B )
)  =  ( Im
`  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) )  +  ( _i  x.  (
( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) ) ) ) )
68 crim 11903 . . . 4  |-  ( ( ( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  e.  RR  /\  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) )  e.  RR )  ->  ( Im `  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Im `  A )  x.  (
Im `  B )
) )  +  ( _i  x.  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) ) ) )  =  ( ( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) )
6962, 63, 68syl2anc 643 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  (
( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  +  ( _i  x.  ( ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im `  A )  x.  (
Re `  B )
) ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) )
7067, 69eqtrd 2462 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  x.  B )
)  =  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) )
71 mulcl 9058 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
72 remim 11905 . . . 4  |-  ( ( A  x.  B )  e.  CC  ->  (
* `  ( A  x.  B ) )  =  ( ( Re `  ( A  x.  B
) )  -  (
_i  x.  ( Im `  ( A  x.  B
) ) ) ) )
7371, 72syl 16 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  x.  B )
)  =  ( ( Re `  ( A  x.  B ) )  -  ( _i  x.  ( Im `  ( A  x.  B ) ) ) ) )
74 remim 11905 . . . . 5  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )
75 remim 11905 . . . . 5  |-  ( B  e.  CC  ->  (
* `  B )  =  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) )
7674, 75oveqan12d 6086 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `  A )  x.  (
* `  B )
)  =  ( ( ( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) )  x.  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) ) )
7716, 21subcld 9395 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  B )  -  (
_i  x.  ( Im `  B ) ) )  e.  CC )
786, 12, 77subdird 9474 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) )  x.  (
( Re `  B
)  -  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  x.  ( ( Re `  B )  -  ( _i  x.  ( Im `  B ) ) ) )  -  ( ( _i  x.  ( Im `  A ) )  x.  ( ( Re `  B )  -  ( _i  x.  ( Im `  B ) ) ) ) ) )
7927, 30, 29, 28subadd4d 9443 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Re `  A )  x.  (
_i  x.  ( Im `  B ) ) ) )  -  ( ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) )  -  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) )  -  ( ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) ) ) ) )
806, 16, 21subdid 9473 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
( Re `  B
)  -  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) ) ) )
8112, 16, 21subdid 9473 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( ( Re `  B )  -  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) )  -  (
( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) ) )
8280, 81oveq12d 6085 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( ( Re `  B )  -  (
_i  x.  ( Im `  B ) ) ) )  -  ( ( _i  x.  ( Im
`  A ) )  x.  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) ) )  -  ( ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) )  -  (
( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) ) ) )
8365, 61, 433eqtr4d 2472 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) ) )
8470oveq2d 6083 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  ( A  x.  B ) ) )  =  ( _i  x.  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) ) ) )
8554, 53oveq12d 6085 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) ) )  =  ( ( _i  x.  ( ( Re `  A )  x.  ( Im `  B ) ) )  +  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) ) ) )
8656, 84, 853eqtr4d 2472 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  ( A  x.  B ) ) )  =  ( ( ( Re `  A )  x.  ( _i  x.  ( Im `  B ) ) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) ) ) )
8783, 86oveq12d 6085 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  x.  B
) )  -  (
_i  x.  ( Im `  ( A  x.  B
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) )  -  ( ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) ) ) ) )
8879, 82, 873eqtr4d 2472 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( ( Re `  B )  -  (
_i  x.  ( Im `  B ) ) ) )  -  ( ( _i  x.  ( Im
`  A ) )  x.  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( Re
`  ( A  x.  B ) )  -  ( _i  x.  (
Im `  ( A  x.  B ) ) ) ) )
8976, 78, 883eqtrd 2466 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `  A )  x.  (
* `  B )
)  =  ( ( Re `  ( A  x.  B ) )  -  ( _i  x.  ( Im `  ( A  x.  B ) ) ) ) )
9073, 89eqtr4d 2465 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  x.  B )
)  =  ( ( * `  A )  x.  ( * `  B ) ) )
9166, 70, 903jca 1134 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  x.  B
) )  =  ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) )  /\  ( Im `  ( A  x.  B
) )  =  ( ( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) )  /\  ( * `  ( A  x.  B
) )  =  ( ( * `  A
)  x.  ( * `
 B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   ` cfv 5440  (class class class)co 6067   CCcc 8972   RRcr 8973   1c1 8975   _ici 8976    + caddc 8977    x. cmul 8979    - cmin 9275   -ucneg 9276   *ccj 11884   Recre 11885   Imcim 11886
This theorem is referenced by:  remul  11917  immul  11924  cjmul  11930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687  ax-resscn 9031  ax-1cn 9032  ax-icn 9033  ax-addcl 9034  ax-addrcl 9035  ax-mulcl 9036  ax-mulrcl 9037  ax-mulcom 9038  ax-addass 9039  ax-mulass 9040  ax-distr 9041  ax-i2m1 9042  ax-1ne0 9043  ax-1rid 9044  ax-rnegex 9045  ax-rrecex 9046  ax-cnre 9047  ax-pre-lttri 9048  ax-pre-lttrn 9049  ax-pre-ltadd 9050  ax-pre-mulgt0 9051
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rmo 2700  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-op 3810  df-uni 4003  df-br 4200  df-opab 4254  df-mpt 4255  df-id 4485  df-po 4490  df-so 4491  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-riota 6535  df-er 6891  df-en 7096  df-dom 7097  df-sdom 7098  df-pnf 9106  df-mnf 9107  df-xr 9108  df-ltxr 9109  df-le 9110  df-sub 9277  df-neg 9278  df-div 9662  df-2 10042  df-cj 11887  df-re 11888  df-im 11889
  Copyright terms: Public domain W3C validator