Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rencldnfilem Structured version   Unicode version

Theorem rencldnfilem 26883
Description: Lemma for rencldnfi 26884. (Contributed by Stefan O'Rear, 18-Oct-2014.)
Assertion
Ref Expression
rencldnfilem  |-  ( ( ( A  C_  RR  /\  B  e.  RR  /\  ( A  =/=  (/)  /\  -.  B  e.  A )
)  /\  A. x  e.  RR+  E. y  e.  A  ( abs `  (
y  -  B ) )  <  x )  ->  -.  A  e.  Fin )
Distinct variable groups:    x, A, y    x, B, y

Proof of Theorem rencldnfilem
Dummy variables  a 
b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2444 . . . . . . . . . . . . 13  |-  ( a  =  c  ->  (
a  =  ( abs `  ( b  -  B
) )  <->  c  =  ( abs `  ( b  -  B ) ) ) )
21rexbidv 2728 . . . . . . . . . . . 12  |-  ( a  =  c  ->  ( E. b  e.  A  a  =  ( abs `  ( b  -  B
) )  <->  E. b  e.  A  c  =  ( abs `  ( b  -  B ) ) ) )
32elrab 3094 . . . . . . . . . . 11  |-  ( c  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  <->  ( c  e.  RR  /\  E. b  e.  A  c  =  ( abs `  ( b  -  B ) ) ) )
4 simp-4l 744 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  A  C_  RR )
5 simpr 449 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  b  e.  A )
64, 5sseldd 3351 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  b  e.  RR )
76recnd 9116 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  b  e.  CC )
8 simp-4r 745 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  B  e.  RR )
98recnd 9116 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  B  e.  CC )
107, 9subcld 9413 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  ( b  -  B )  e.  CC )
11 simprr 735 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  ->  -.  B  e.  A
)
1211ad2antrr 708 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  -.  B  e.  A )
13 nelneq 2536 . . . . . . . . . . . . . . . . 17  |-  ( ( b  e.  A  /\  -.  B  e.  A
)  ->  -.  b  =  B )
145, 12, 13syl2anc 644 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  -.  b  =  B )
15 subeq0 9329 . . . . . . . . . . . . . . . . . 18  |-  ( ( b  e.  CC  /\  B  e.  CC )  ->  ( ( b  -  B )  =  0  <-> 
b  =  B ) )
1615necon3abid 2636 . . . . . . . . . . . . . . . . 17  |-  ( ( b  e.  CC  /\  B  e.  CC )  ->  ( ( b  -  B )  =/=  0  <->  -.  b  =  B ) )
177, 9, 16syl2anc 644 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  ( (
b  -  B )  =/=  0  <->  -.  b  =  B ) )
1814, 17mpbird 225 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  ( b  -  B )  =/=  0
)
1910, 18absrpcld 12252 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  ( abs `  ( b  -  B
) )  e.  RR+ )
20 eleq1 2498 . . . . . . . . . . . . . 14  |-  ( c  =  ( abs `  (
b  -  B ) )  ->  ( c  e.  RR+  <->  ( abs `  (
b  -  B ) )  e.  RR+ )
)
2119, 20syl5ibrcom 215 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  ( c  =  ( abs `  (
b  -  B ) )  ->  c  e.  RR+ ) )
2221rexlimdva 2832 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  ->  ( E. b  e.  A  c  =  ( abs `  ( b  -  B ) )  ->  c  e.  RR+ ) )
2322expimpd 588 . . . . . . . . . . 11  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  -> 
( ( c  e.  RR  /\  E. b  e.  A  c  =  ( abs `  ( b  -  B ) ) )  ->  c  e.  RR+ ) )
243, 23syl5bi 210 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  -> 
( c  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  ->  c  e.  RR+ ) )
2524ssrdv 3356 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR+ )
2625adantr 453 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR+ )
27 abrexfi 7409 . . . . . . . . . . 11  |-  ( A  e.  Fin  ->  { a  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  e.  Fin )
28 rabssab 3432 . . . . . . . . . . 11  |-  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  C_  { a  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }
29 ssfi 7331 . . . . . . . . . . 11  |-  ( ( { a  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  e.  Fin  /\ 
{ a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  { a  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } )  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  e.  Fin )
3027, 28, 29sylancl 645 . . . . . . . . . 10  |-  ( A  e.  Fin  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  e.  Fin )
3130adantl 454 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  e.  Fin )
32 simplrl 738 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  A  =/=  (/) )
33 n0 3639 . . . . . . . . . . 11  |-  ( A  =/=  (/)  <->  E. y  y  e.  A )
3432, 33sylib 190 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  E. y  y  e.  A )
35 simp-4l 744 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  A  C_  RR )
36 simpr 449 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  y  e.  A )
3735, 36sseldd 3351 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  y  e.  RR )
3837recnd 9116 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  y  e.  CC )
39 simp-4r 745 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  B  e.  RR )
4039recnd 9116 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  B  e.  CC )
4138, 40subcld 9413 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  ( y  -  B )  e.  CC )
4241abscld 12240 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  ( abs `  ( y  -  B
) )  e.  RR )
43 eqid 2438 . . . . . . . . . . . . . 14  |-  ( abs `  ( y  -  B
) )  =  ( abs `  ( y  -  B ) )
44 oveq1 6090 . . . . . . . . . . . . . . . . 17  |-  ( b  =  y  ->  (
b  -  B )  =  ( y  -  B ) )
4544fveq2d 5734 . . . . . . . . . . . . . . . 16  |-  ( b  =  y  ->  ( abs `  ( b  -  B ) )  =  ( abs `  (
y  -  B ) ) )
4645eqeq2d 2449 . . . . . . . . . . . . . . 15  |-  ( b  =  y  ->  (
( abs `  (
y  -  B ) )  =  ( abs `  ( b  -  B
) )  <->  ( abs `  ( y  -  B
) )  =  ( abs `  ( y  -  B ) ) ) )
4746rspcev 3054 . . . . . . . . . . . . . 14  |-  ( ( y  e.  A  /\  ( abs `  ( y  -  B ) )  =  ( abs `  (
y  -  B ) ) )  ->  E. b  e.  A  ( abs `  ( y  -  B
) )  =  ( abs `  ( b  -  B ) ) )
4843, 47mpan2 654 . . . . . . . . . . . . 13  |-  ( y  e.  A  ->  E. b  e.  A  ( abs `  ( y  -  B
) )  =  ( abs `  ( b  -  B ) ) )
4948adantl 454 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  E. b  e.  A  ( abs `  ( y  -  B
) )  =  ( abs `  ( b  -  B ) ) )
50 eqeq1 2444 . . . . . . . . . . . . . 14  |-  ( a  =  ( abs `  (
y  -  B ) )  ->  ( a  =  ( abs `  (
b  -  B ) )  <->  ( abs `  (
y  -  B ) )  =  ( abs `  ( b  -  B
) ) ) )
5150rexbidv 2728 . . . . . . . . . . . . 13  |-  ( a  =  ( abs `  (
y  -  B ) )  ->  ( E. b  e.  A  a  =  ( abs `  (
b  -  B ) )  <->  E. b  e.  A  ( abs `  ( y  -  B ) )  =  ( abs `  (
b  -  B ) ) ) )
5251elrab 3094 . . . . . . . . . . . 12  |-  ( ( abs `  ( y  -  B ) )  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  <->  ( ( abs `  ( y  -  B
) )  e.  RR  /\ 
E. b  e.  A  ( abs `  ( y  -  B ) )  =  ( abs `  (
b  -  B ) ) ) )
5342, 49, 52sylanbrc 647 . . . . . . . . . . 11  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  ( abs `  ( y  -  B
) )  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } )
54 ne0i 3636 . . . . . . . . . . 11  |-  ( ( abs `  ( y  -  B ) )  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  =/=  (/) )
5553, 54syl 16 . . . . . . . . . 10  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  =/=  (/) )
5634, 55exlimddv 1649 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  =/=  (/) )
57 ssrab2 3430 . . . . . . . . . 10  |-  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  C_  RR
5857a1i 11 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR )
59 ltso 9158 . . . . . . . . . . 11  |-  <  Or  RR
60 cnvso 5413 . . . . . . . . . . 11  |-  (  < 
Or  RR  <->  `'  <  Or  RR )
6159, 60mpbi 201 . . . . . . . . . 10  |-  `'  <  Or  RR
62 fisupcl 7474 . . . . . . . . . 10  |-  ( ( `'  <  Or  RR  /\  ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  e.  Fin  /\  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  =/=  (/)  /\  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR ) )  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } )
6361, 62mpan 653 . . . . . . . . 9  |-  ( ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  e.  Fin  /\  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  =/=  (/)  /\  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR )  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } )
6431, 56, 58, 63syl3anc 1185 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } ,  RR ,  `'  <  )  e. 
{ a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } )
6526, 64sseldd 3351 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } ,  RR ,  `'  <  )  e.  RR+ )
6657a1i 11 . . . . . . . . . 10  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  C_  RR )
67 soss 4523 . . . . . . . . . . . . . . 15  |-  ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR  ->  ( `'  <  Or  RR  ->  `'  <  Or 
{ a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ) )
6857, 61, 67mp2 9 . . . . . . . . . . . . . 14  |-  `'  <  Or 
{ a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }
6968a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  `'  <  Or  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } )
70 fisupg 7357 . . . . . . . . . . . . 13  |-  ( ( `'  <  Or  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  /\  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  e.  Fin  /\  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  =/=  (/) )  ->  E. c  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  ( A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  -.  c `'  <  d  /\  A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ( d `'  <  c  ->  E. x  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } d `'  <  x ) ) )
7169, 31, 56, 70syl3anc 1185 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  E. c  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  ( A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  -.  c `'  <  d  /\  A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ( d `'  <  c  ->  E. x  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } d `'  <  x ) ) )
72 elrabi 3092 . . . . . . . . . . . . . 14  |-  ( c  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ->  c  e.  RR )
73 elrabi 3092 . . . . . . . . . . . . . . . . 17  |-  ( d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ->  d  e.  RR )
74 vex 2961 . . . . . . . . . . . . . . . . . . . . 21  |-  c  e. 
_V
75 vex 2961 . . . . . . . . . . . . . . . . . . . . 21  |-  d  e. 
_V
7674, 75brcnv 5057 . . . . . . . . . . . . . . . . . . . 20  |-  ( c `'  <  d  <->  d  <  c )
7776notbii 289 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  c `'  <  d  <->  -.  d  <  c )
78 lenlt 9156 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( c  e.  RR  /\  d  e.  RR )  ->  ( c  <_  d  <->  -.  d  <  c ) )
7978biimprd 216 . . . . . . . . . . . . . . . . . . 19  |-  ( ( c  e.  RR  /\  d  e.  RR )  ->  ( -.  d  < 
c  ->  c  <_  d ) )
8077, 79syl5bi 210 . . . . . . . . . . . . . . . . . 18  |-  ( ( c  e.  RR  /\  d  e.  RR )  ->  ( -.  c `'  <  d  ->  c  <_  d ) )
8180adantll 696 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  c  e.  RR )  /\  d  e.  RR )  ->  ( -.  c `'  <  d  ->  c  <_  d ) )
8273, 81sylan2 462 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  c  e.  RR )  /\  d  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } )  ->  ( -.  c `'  <  d  ->  c  <_  d ) )
8382ralimdva 2786 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  c  e.  RR )  ->  ( A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  -.  c `'  <  d  ->  A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } c  <_ 
d ) )
8483adantrd 456 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  c  e.  RR )  ->  ( ( A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  -.  c `'  <  d  /\  A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ( d `'  <  c  ->  E. x  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } d `'  <  x ) )  ->  A. d  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } c  <_  d ) )
8572, 84sylan2 462 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  c  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } )  -> 
( ( A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  -.  c `'  <  d  /\  A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  ( d `'  <  c  ->  E. x  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } d `'  <  x ) )  ->  A. d  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } c  <_  d ) )
8685reximdva 2820 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  ( E. c  e. 
{ a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  ( A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  -.  c `'  <  d  /\  A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ( d `'  <  c  ->  E. x  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } d `'  <  x ) )  ->  E. c  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } c  <_  d
) )
8771, 86mpd 15 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  E. c  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } c  <_  d
)
8887adantr 453 . . . . . . . . . 10  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  E. c  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } c  <_  d
)
89 lbinfmle 9965 . . . . . . . . . 10  |-  ( ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR  /\  E. c  e. 
{ a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } c  <_  d  /\  ( abs `  (
y  -  B ) )  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } )  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } ,  RR ,  `'  <  )  <_  ( abs `  ( y  -  B ) ) )
9066, 88, 53, 89syl3anc 1185 . . . . . . . . 9  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  <_  ( abs `  (
y  -  B ) ) )
9157, 64sseldi 3348 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } ,  RR ,  `'  <  )  e.  RR )
9291adantr 453 . . . . . . . . . 10  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  e.  RR )
9392, 42lenltd 9221 . . . . . . . . 9  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  ( sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  <_  ( abs `  (
y  -  B ) )  <->  -.  ( abs `  ( y  -  B
) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  ) ) )
9490, 93mpbid 203 . . . . . . . 8  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  -.  ( abs `  ( y  -  B ) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } ,  RR ,  `'  <  ) )
9594ralrimiva 2791 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  A. y  e.  A  -.  ( abs `  (
y  -  B ) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  ) )
96 breq2 4218 . . . . . . . . . 10  |-  ( x  =  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  ->  ( ( abs `  ( y  -  B
) )  <  x  <->  ( abs `  ( y  -  B ) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } ,  RR ,  `'  <  ) ) )
9796notbid 287 . . . . . . . . 9  |-  ( x  =  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  ->  ( -.  ( abs `  ( y  -  B ) )  < 
x  <->  -.  ( abs `  ( y  -  B
) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  ) ) )
9897ralbidv 2727 . . . . . . . 8  |-  ( x  =  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  ->  ( A. y  e.  A  -.  ( abs `  ( y  -  B ) )  < 
x  <->  A. y  e.  A  -.  ( abs `  (
y  -  B ) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  ) ) )
9998rspcev 3054 . . . . . . 7  |-  ( ( sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } ,  RR ,  `'  <  )  e.  RR+  /\  A. y  e.  A  -.  ( abs `  ( y  -  B
) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  ) )  ->  E. x  e.  RR+  A. y  e.  A  -.  ( abs `  ( y  -  B
) )  <  x
)
10065, 95, 99syl2anc 644 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  E. x  e.  RR+  A. y  e.  A  -.  ( abs `  ( y  -  B ) )  <  x )
101 ralnex 2717 . . . . . . . 8  |-  ( A. y  e.  A  -.  ( abs `  ( y  -  B ) )  <  x  <->  -.  E. y  e.  A  ( abs `  ( y  -  B
) )  <  x
)
102101rexbii 2732 . . . . . . 7  |-  ( E. x  e.  RR+  A. y  e.  A  -.  ( abs `  ( y  -  B ) )  < 
x  <->  E. x  e.  RR+  -. 
E. y  e.  A  ( abs `  ( y  -  B ) )  <  x )
103 rexnal 2718 . . . . . . 7  |-  ( E. x  e.  RR+  -.  E. y  e.  A  ( abs `  ( y  -  B ) )  < 
x  <->  -.  A. x  e.  RR+  E. y  e.  A  ( abs `  (
y  -  B ) )  <  x )
104102, 103bitri 242 . . . . . 6  |-  ( E. x  e.  RR+  A. y  e.  A  -.  ( abs `  ( y  -  B ) )  < 
x  <->  -.  A. x  e.  RR+  E. y  e.  A  ( abs `  (
y  -  B ) )  <  x )
105100, 104sylib 190 . . . . 5  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  -.  A. x  e.  RR+  E. y  e.  A  ( abs `  ( y  -  B ) )  <  x )
106105ex 425 . . . 4  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  -> 
( A  e.  Fin  ->  -.  A. x  e.  RR+  E. y  e.  A  ( abs `  ( y  -  B ) )  <  x ) )
1071063impa 1149 . . 3  |-  ( ( A  C_  RR  /\  B  e.  RR  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  -> 
( A  e.  Fin  ->  -.  A. x  e.  RR+  E. y  e.  A  ( abs `  ( y  -  B ) )  <  x ) )
108107con2d 110 . 2  |-  ( ( A  C_  RR  /\  B  e.  RR  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  -> 
( A. x  e.  RR+  E. y  e.  A  ( abs `  ( y  -  B ) )  <  x  ->  -.  A  e.  Fin )
)
109108imp 420 1  |-  ( ( ( A  C_  RR  /\  B  e.  RR  /\  ( A  =/=  (/)  /\  -.  B  e.  A )
)  /\  A. x  e.  RR+  E. y  e.  A  ( abs `  (
y  -  B ) )  <  x )  ->  -.  A  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937   E.wex 1551    = wceq 1653    e. wcel 1726   {cab 2424    =/= wne 2601   A.wral 2707   E.wrex 2708   {crab 2711    C_ wss 3322   (/)c0 3630   class class class wbr 4214    Or wor 4504   `'ccnv 4879   ` cfv 5456  (class class class)co 6083   Fincfn 7111   supcsup 7447   CCcc 8990   RRcr 8991   0cc0 8992    < clt 9122    <_ cle 9123    - cmin 9293   RR+crp 10614   abscabs 12041
This theorem is referenced by:  rencldnfi  26884
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-sup 7448  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-n0 10224  df-z 10285  df-uz 10491  df-rp 10615  df-seq 11326  df-exp 11385  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043
  Copyright terms: Public domain W3C validator